Bi-parameter Semigroups of linear operators

S. Hejazian1, H. Mahdavian Rad1, M. Mirzavaziri(1,2) and H. Mohammadian1*

1Department of Pure Mathematics, Ferdowsi University of Mashhad, P.O.Box 1159, Mashhad 91775, Iran
2Center of Excellence in Analysis on Algebraic Structures (CEAAS), Ferdowsi University of Mashhad, Iran

Received 23 October 2011, Accepted 10 December 2011, Published 17 January 2012

Abstract: Let X be a Banach space. We define the concept of a bi-parameter semigroup on X and its first and second generators. We also study bi-parameter semigroups on Banach algebras. A relation between uniformly continuous bi-parameter semigroups and σ-derivations is also established. It is proved that if $\{\alpha_{t,s}\}_{t,s \geq 0}$ is a uniformly continuous bi-parameter semigroup on a Banach algebra X, whose first and second generators are d and σ, respectively, and if d is also a σ-derivation then $d^n(ab) = (d + \sigma)^n(a) \ast (d + \sigma)^n(b)$ and $\alpha_{t,0}(ab) = \alpha_{t,1}(a) \ast \alpha_{t,1}(b)$ for all $a, b \in X$.

© Electronic Journal of Theoretical Physics. All rights reserved.

Keywords: One Parameter Semigroup, Bi-parameter Semigroup, σ-derivation, Infinitesimal Generator

PACS (2010): 02.20.-a; 02.20.Hj; 02.20.Sv

2010 Mathematics Subject Classification.:47D06; 47B47

1. introduction

Let \mathcal{X} be a Banach space and let $\mathcal{L}(X')$ denote the Banach space of all bounded linear operators on X. A family $\{\alpha_t\}_{t \geq 0}$ in $\mathcal{B}(X)$ is called a uniformly (resp. strongly) continuous one-parameter semigroup on X, if

(i) α_0 is the identity mapping I on X;
(ii) $\alpha_{t+t'} = \alpha_t \alpha_{t'}$ for all $t, t' \in \mathbb{R}^+$;
(iii) $\lim_{t \downarrow 0} \alpha_t = I$ uniformly (resp. strongly) on X.

Namely, α is a representation of the semigroup $(\mathbb{R}^+, +)$ into $\mathcal{B}(X)$ which is continuous with respect to the uniform (resp. strong) operator topology on $\mathcal{B}(X)$. When $\{\alpha_t\}_{t \geq 0}$ is

* Email: hashchi@yahoo.com, h.amirhashchi@mahshahriau.ac.ir
a one-parameter semigroup on \(\mathcal{X}\), the infinitesimal generator \(\delta\) of \(\alpha\) is defined by

\[
\delta(x) = \lim_{t \downarrow 0} \frac{1}{t} (\alpha_t(x) - x),
\]

whenever the limit exists and the domain \(D(\delta)\) of \(\delta\) is the set of all \(x \in \mathcal{X}\) for which this limit exists. If \(\{\alpha_t\}_{t \geq 0}\) is strongly continuous then \(D(\delta)\) is a dense linear subspace of \(\mathcal{X}\) and \(\delta\) is a closed linear operator on this domain and if the semigroup \(\{\alpha_t\}_{t \geq 0}\) is uniformly continuous, \(\delta\) is an everywhere defined bounded linear operator on \(\mathcal{X}\), see [12] for details. For example, let \(\mathcal{X}\) be the Banach space (algebra) of all bounded uniformly continuous functions on \(\mathbb{R}\) with the supremum norm. For each \(t \in \mathbb{R}^+\), consider the linear mapping on \(\mathcal{X}\) defined by \((\alpha_t(f))(h) = f(t + h), (f \in \mathcal{X})\). It is easy to see that the family \(\{\alpha_t\}_{t \in \mathbb{R}^+}\) is a one-parameter semigroup satisfying \(\|\alpha_t\| \leq 1\) and \((\delta(f))(h) = f'(h)\) if \(f \in D(\delta)\). Obviously \(D(\delta)\) is the linear subspace of \(\mathcal{X}\) consisting of those \(f\) in \(\mathcal{X}\) which are differentiable with \(f' \in \mathcal{X}\). This example shows that the infinitesimal generator of this one-parameter semigroup, can be obtained by taking derivative when it exists.

It is easy to see that if \(\delta\) is a bounded linear operator on a Banach space \(\mathcal{X}\), then \(\alpha_t = \exp(t\delta)\) \((t \geq 0)\) is a uniformly and hence strongly continuous one-parameter semigroup of operators on \(\mathcal{X}\). In fact every uniformly continuous one-parameter semigroup is necessarily of this form for some bounded linear operator \(\delta\) (see [12], Theorems I.2, I.3 and Corollary I.4).

If \(\{\alpha_t\}_{t \geq 0}\) is a uniformly continuous one-parameter semigroup of homomorphisms on a Banach algebra \(\mathcal{X}\), then its infinitesimal generator \(\delta\) satisfies the Leibniz’s rule \(\delta(xy) = \delta(x)y + x\delta(y)\) for all \(x, y \in \mathcal{X}\). Such a linear mapping is called a derivation. Also, if \(\delta\) is a bounded derivation on \(\mathcal{X}\) then \(\alpha_t = \exp(t\delta)\) \((t \geq 0)\) forms a uniformly continuous one-parameter semigroup of homomorphisms on \(\mathcal{X}\), see [12, Theorems 1.2, 1.3 and Corollary 1.4] and also [1, Proposition 18.7]. The theory of one-parameter semigroups on operator algebras and their infinitesimal generators have been largely motivated by models of quantum statistical mechanics. The reader is referred to [4, 5, 13] for more details.

Let \(\mathcal{X}\) be a Banach algebra and let \(\sigma\) be a linear mapping on \(\mathcal{X}\). A linear mapping \(d : \mathcal{X} \to \mathcal{X}\) is called a \(\sigma\)-derivation if it satisfies the generalized Leibniz rule \(d(xy) = d(x)\sigma(y) + \sigma(x)d(y)\) for all \(x, y \in \mathcal{X}\). For example, if \(\rho\) is a homomorphism and \(\sigma = \frac{\rho}{2}\) then \(\rho\) is a \(\sigma\)-derivation. Moreover, when \(\sigma\) is an automorphism we can consider \(\delta = d\sigma^{-1}\) and find out that \(\delta\) is an ordinary derivation. This shows that the theory of \(\sigma\)-derivations combines the two subjects of derivations and homomorphisms. \(\sigma\)-derivations are investigated by many physicists and mathematicians. Automatic continuity, innerness, approximately innerness and amenability are the most important subjects which are studied in the theory of derivations and \(\sigma\)-derivations, see [6, 7, 8, 9, 10, 11].

When \(\delta\) is a derivation on a Banach algebra \(\mathcal{X}\), using the parameter \(t\) we can consider \(\alpha_t = \exp(t\delta)\) and construct the one parameter semigroup \(\{\alpha_t\}_{t \geq 0}\) of homomorphisms on \(\mathcal{X}\). It seems that when we are dealing with a \(\sigma\)-derivation \(d\), we need to consider two parameters \(t\) and \(s\) corresponding to \(d\) and \(\sigma\), respectively. In what follows we define a uniformly (resp. strongly) bi-parameter semigroup of operators and its first and second
generators. We will show that each uniformly continuous bi-parameter semigroup of operators on a Banach space X is of the form $\alpha_{t,s} = \exp(t(d + s\sigma))$ $(t, s \geq 0)$, where d and σ are bounded linear operators on X. We will also give a relation between uniformly continuous bi-parameter semigroups on Banach algebras and σ-derivations.

2. Bi-parameter Semigroups

We start with the definition of a bi-parameter semigroup.

Definition 2.1. Let X be a Banach space. A family $\{\alpha_{t,s}\}_{t,s \geq 0}$ of bounded linear operators on X is called a uniformly (resp. strongly) continuous bi-parameter semigroup if

(i) for each fixed $s \geq 0$, the family $\{\alpha_{t,s}\}_{t \geq 0}$ is a uniformly (resp. strongly) continuous one parameter semigroup with infinitesimal generator δ_s;

(ii) for each $s \geq 0$, $D(\delta_s) = D(\delta_0)$;

(iii) for $s > 0$, the value

$$\frac{1}{s}(\lim_{t \downarrow 0} \frac{1}{t}(\alpha_{t,s}(x) - x) - \lim_{t \downarrow 0} \frac{1}{t}(\alpha_{t,0}(x) - x)) = \frac{1}{s}(\delta_s(x) - \delta_0(x))$$

is independent of s for all $x \in D(\delta_0)$.

Take $d = \delta_0$ and $D = D(\delta_0)$. Note that for $x \in D$ and $s > 0$, $\sigma(x) := \frac{1}{s}(\delta_s(x) - \delta_0(x))$ is the average growth of δ_s in the interval $[0, s]$ at x, which by definition is independent of the choice of s. Obviously σ is a linear mapping on D and $\delta_s = d + s\sigma$. The operators d and σ, defined on D, are said to be the first and second generators of the bi-parameter semigroup $\{\alpha_{t,s}\}_{t,s \geq 0}$, respectively. The ordered pair (d, σ) is simply called the generator of $\{\alpha_{t,s}\}_{t,s \geq 0}$.

If d, σ are bounded linear operators on X then as in the case of one-parameter semigroups [12], we examine $\alpha_{t,s} = \exp(t(d + s\sigma)) = \exp(t\delta_s)$ and get the following result.

Proposition 2.2. If $\{\alpha_{t,s}\}_{t,s \geq 0}$ is a uniformly continuous bi-parameter semigroup, then its first and second generators are bounded. Conversely, if d and σ are two bounded linear operators on a Banach space X then $\alpha_{t,s} = \exp(t(d + s\sigma))$ is a uniformly continuous bi-parameter semigroup whose generator is (d, σ).

It is clear that the first and second generators of a uniformly continuous bi-parameter semigroup are unique. Also, if d and σ are bounded linear operators then $\alpha_{t,s} = \exp(t(d + s\sigma))$ is a uniformly continuous bi-parameter semigroup with generator (d, σ).

Is this semigroup unique? The answer is affirmative as we see below.

Proposition 2.3. Let $\{\alpha_{t,s}\}_{t,s \geq 0}$ and $\{\beta_{t,s}\}_{t,s \geq 0}$ be two uniformly continuous bi-parameter semigroups with the same generator (d, σ). Then $\alpha_{t,s} = \beta_{t,s}$, for every $t, s \geq 0$.
Proof 2.4. Fix \(s \geq 0 \), then \(\{\alpha_{t,s}\}_{t \geq 0} \) and \(\{\beta_{t,s}\}_{t \geq 0} \) are one parameter semigroups with infinitesimal generator \(\delta_s \). So \(\alpha_{t,s} = \beta_{t,s} \) for all \(t \geq 0 \). Since \(s \) is arbitrary we have the result.

Corollary 2.5. Uniformly continuous bi-parameter semigroups are of the form \(\exp(t(d + s\sigma)) \) for bounded linear operators \(d \) and \(\sigma \).

3. \(\sigma \)-Derivations and Bi-parameter Semigroups

Let \(d, \sigma \) be linear operators on a linear space \(X \). We construct a family of linear mappings \(\{Q_{n,k}\} \) \((n \in \mathbb{N}, \ 0 \leq k \leq 2^n - 1) \), called the binary family corresponding to \((d, \sigma) \), as follows.

Write the positive integer \(k \) in base 2 with exactly \(n \) digits, and put the operator \(d \) in place of 1’s and \(\sigma \) in place of 0’s. For example, \(7 = (111)_2 \), \(11 = (01011)_2 \), \(Q_{3,7} = ddd = d^3 \) and \(Q_{5,11} = \sigma d \sigma d \sigma = \sigma d \sigma d^2 \) (cf. [9]).

The following lemma is stated and proved in [9, Lemma ...]. We give the proof, for the sake of convenience.

Lemma 3.1. Let \(n \in \mathbb{N} \) and let \(k \in \{0, ..., 2^n - 1\} \). Then

(i) \(dQ_{n,k} = Q_{n+1,2^n+k} \);
(ii) \(\sigma Q_{n,k} = Q_{n+1,k} \).

Proof 3.2. Suppose that \(k = (c_n \ldots c_2 c_1)_2 \) where \(c_j \in \{0,1\} \) for \(j = 1, ..., n \), be the representation of \(k \) in the base 2 with \(n \) digits. Then

(i) \(dQ_{n,k} = Q_{n+1,1c_n \ldots c_2 c_1}_2 = Q_{n+1,k+2^n} \);
(ii) \(\sigma Q_{n,k} = Q_{n+1,0c_n \ldots c_2 c_1}_2 = Q_{n+1,k} \).

Lemma 3.3. If \(n \in \mathbb{N} \) and \(k \in \{0, ..., 2^n - 1\} \). Then

\[(d + \sigma)^n = \sum_{k=0}^{2^n-1} Q_{n,k}. \]

Proof 3.4. We prove the assertion by induction on \(n \). For \(n = 1 \) the result is clear.
Now suppose that it is true for n. By Lemma 3.1, we obtain

\[
(d + \sigma)^{n+1} = (d + \sigma)(d + \sigma)^n \\
= (d + \sigma)\left(\sum_{k=0}^{2^n-1} Q_{n,k} \right) \\
= \sum_{k=0}^{2^n-1} dQ_{n,k} + \sum_{k=0}^{2^n-1} \sigma Q_{n,k} \\
= \sum_{k=0}^{2^n-1} Q_{n+1,2^n+k} + \sum_{k=0}^{2^n-1} Q_{n+1,k} \\
= \sum_{k=0}^{2^n+1-1} Q_{n+1,k} + \sum_{k=0}^{2^n-1} Q_{n+1,k} \\
= \sum_{k=0}^{2^n+1-1} Q_{n+1,k}.
\]

Definition 3.5. Let X be a Banach space and let $\{\alpha_{t,s}\}_{t,s \geq 0}$ be a uniformly continuous bi-parameter semigroup of bounded linear operators on X with generator (d, σ), that is $\alpha_{t,s} = \exp(t(d + s\sigma))$. Take $\delta_s = d + s\sigma$ $(s \geq 0)$. Take

\[
Y = \{ \sum_{n=0}^{\infty} r_n t^n \delta^n : r_n \in \mathbb{C}, t, s \geq 0, \text{ and the series is convergent in norm of } L(X) \},
\]

\[
H = \{ T(a) : T \in Y \text{ and } a \in X \}.
\]

Let n, m be nonnegative integers and $r, w \in \mathbb{C}$. We define a mapping $\star : H \times H \to X$ as follows

\[
rt^n(d + s\sigma)^n(a) \star wt^m(d + s\sigma)^m(b) = \begin{cases}
0 & n \neq m \text{ or } r \neq w \\
rt^n s^n \sum_{k=0}^{2^n-1} Q_{n,k}(a)Q_{n,2^n-1-k}(b) & n = m, r = w
\end{cases}
\]

and for $r_i, w_i \in \mathbb{C}$

\[
\sum_{i=0}^{\infty} r_i t^i(d + s\sigma)^i(a) \star \sum_{i=0}^{\infty} w_i t^i(d + s\sigma)^i(b) = \sum_{i=0}^{\infty} \left(r_i t^i(d + s\sigma)^i(a) \star w_i t^i(d + s\sigma)^i(b) \right)
\]

whenever the limit exists; otherwise we define

\[
\sum_{i=1}^{\infty} r_i t^i(d + s\sigma)^i(a) \star \sum_{i=1}^{\infty} w_i t^i(d + s\sigma)^i(b) = 0.
\]
In particular,

\[\alpha_{t,s}(a) \star \alpha_{t,s}(b) = \sum_{n=0}^{\infty} \left(\frac{t^n(d + s\sigma)^n}{n!} \right)(a) \star \left(\frac{t^n(d + s\sigma)^n}{n!} \right)(b). \]

(1)

Since \(d \) and \(\sigma \) are bounded operators, the series in (1) converges.

Lemma 3.6. Let \(\{\alpha_{t,s}\}_{t,s \geq 0} \) be a uniformly continuous bi-parameter semigroup with generator \((d, \sigma) \). Then

\[\alpha_{t,1}(a) \star \alpha_{t,1}(b) - ab = (\alpha_{t,1}(a) - a) \star (\alpha_{t,1}(b) - b). \]

(2)

Proof 3.7. By definition of \(\star \), we have

\[\alpha_{t,1}(a) \star \alpha_{t,1}(b) - ab = \sum_{n=0}^{\infty} \frac{t^n(d + \sigma)^n}{n!}(a) \star \frac{t^n(d + \sigma)^n}{n!}(b) - ab \]

\[= ab + t(d + \sigma)(a) \star t(d + \sigma)(b) + \frac{t(d + \sigma)^2}{2!}(a) \star \frac{t(d + \sigma)^2}{2!}(b) + \cdots - ab \]

\[= t(d + \sigma)(a) \star t(d + \sigma)(b) + \frac{t(d + \sigma)^2}{2!}(a) \star \frac{t(d + \sigma)^2}{2!}(b) + \cdots. \]

On the other hand

\[(\alpha_{t,1}(a) - a) \star (\alpha_{t,1}(b) - b) = \sum_{n=1}^{\infty} \frac{t^n(d + \sigma)^n}{n!}(a) \star \sum_{n=1}^{\infty} \frac{t^n(d + \sigma)^n}{n!}(b) \]

\[= t(d + \sigma)(a) \star t(d + \sigma)(b) + \frac{t(d + \sigma)^2}{2!}(a) \star \frac{t(d + \sigma)^2}{2!}(b) + \cdots. \]

Thus we have the equality in (2).

Lemma 3.8. Let \(\{\alpha_{t,s}\}_{t,s \geq 0} \) be a uniformly continuous bi-parameter semigroup with generator \((d, \sigma) \). If \(\sigma = I \), the identity mapping, then

\[\alpha_{t,1}(a) \star \alpha_{t,1}(b) = \alpha_{t,0}(a) \cdot \alpha_{t,0}(b). \]
Proof 3..9. We have

\[\alpha_{t,1}(a) \star \alpha_{t,1}(b) = \exp^{t(d+I)}(a) \star \exp^{t(d+I)}(b) \]

\[= \left(\sum_{n=1}^{\infty} \frac{t^n(d + I)^n(a)}{n!} \right) \star \left(\sum_{n=1}^{\infty} \frac{t^n(d + I)^n(b)}{n!} \right) \]

\[= \sum_{n=1}^{\infty} \frac{t^n(d + I)^n(a)}{n!} \star \left(\sum_{n=1}^{\infty} \frac{t^n(d + I)^n(b)}{n!} \right) \]

\[= \sum_{n=1}^{\infty} \frac{\left(\sum_{k=0}^{n} \binom{n}{k} d^k(a) \right)}{n!} \star \left(\sum_{n=1}^{\infty} \frac{\left(\sum_{k=0}^{n} \binom{n}{k} d^k(b) \right)}{n!} \right) \]

\[= \sum_{n=1}^{\infty} \sum_{k=0}^{n} \frac{t^n}{n!} \binom{n}{k} d^k(a) d^{n-k}(b) \]

\[= \sum_{n=1}^{\infty} \sum_{k=0}^{n} t^n \frac{d^k(a)}{k!} \frac{d^{n-k}(b)}{(n-k)!} \]

\[= \left(\sum_{n=1}^{\infty} \frac{t^n}{n!} d^n(a) \right) \cdot \left(\sum_{n=1}^{\infty} \frac{t^n}{n!} d^n(b) \right) \]

\[= \alpha_{t,0}(a) \cdot \alpha_{t,0}(b). \]

Taking idea from the relation between uniformly continuous one parameter semigroups and derivations, we now are ready to state a relation between uniformly continuous bi-parameter semigroups and \(\sigma \)-derivations.

Theorem 3..10. Let \(\{\alpha_{t,s}\}_{t,s \geq 0} \) be a uniformly continuous bi-parameter semigroup with generator \((d, \sigma) \). If \(d \) is also a \(\sigma \)-derivation then

(i) \(d^n(ab) = (d + \sigma)^n(a) \star (d + \sigma)^n(b) \);

(ii) \(\alpha_{t,0}(ab) = \alpha_{t,1}(a) \star \alpha_{t,1}(b) \).

In particular, if \(\sigma = I \) and \(d \) is a derivation then

\[\alpha_{t,0}(ab) = \alpha_{t,0}(a) \cdot \alpha_{t,0}(b), \]

i.e., \(\alpha_{t,0} \) is a homomorphism.

Proof 3..11. We prove (i) by induction. For \(n = 1 \) the result is obvious. Now suppose
it is true for \(n \). From Definition 3.5 and Lemmas 3.1, 3.3 we have

\[
d^{n+1}(ab) = d\left(d^n(ab)\right)
= d((d + \sigma)^n(a) \star (d + \sigma)^n(b))
= d\left(\sum_{k=0}^{2^n-1} Q_{n,k}(a)Q_{n,2^n-1-k}(b)\right)
= \sum_{k=0}^{2^n-1} (dQ_{n,k}(a)\sigma Q_{n,2^n-1-k}(b) + \sigma Q_{n,k}(a)dQ_{n,2^n-1-k}(b))
= \sum_{k=0}^{2^n-1} (Q_{n+1,k+2^n}(a)Q_{n+1,2^n-1-k}(b) + Q_{n+1,k}(a)Q_{n+1,2^n-1-k+2^n}(b))
= \sum_{k=0}^{2^n-1} (Q_{n+1,k+2^n}(a)Q_{n+1,2^n+1-1-(k+2^n)}(b)) + \sum_{k=0}^{2^n-1} (Q_{n+1,k}(a)Q_{n+1,2^n+1-1-k+2^n}(b))
= \sum_{k=0}^{2^n+1-1} Q_{n+1,k}(a)Q_{n+1,2^n+1-1-k}(b)
= \left(\sum_{k=0}^{2^n+1-1} Q_{n+1,k}(a)\right) \star \left(\sum_{k=0}^{2^n+1-1} Q_{n+1,k}(b)\right)
= (d + \sigma)^{n+1}(a) \star (d + \sigma)^{n+1}(b).
\]

The assertion \((ii)\) follows by \((i)\) and the definition of \(\star\).

Theorem 3.12. Let \(\{\alpha_{t,s}\}_{t,s \geq 0}\) be a uniformly continuous bi-parameter semigroup with generator \((d, \sigma)\). If

\[
\alpha_{t,0}(ab) = \alpha_{t,1}(a) \star \alpha_{t,1}(b),
\]

then \(d\) is a \(\sigma\)-derivation. In particular, if \(\sigma = I\) then \(d\) is a derivation.

Proof 3.13. By assumption and the definition of \(\star\) we have

\[
d(ab) = \lim_{t \to 0} \frac{\alpha_{t,0}(ab) - ab}{t}
= \lim_{t \to 0} \frac{\alpha_{t,1}(a) \star \alpha_{t,1}(b) - ab}{t}
= \lim_{t \to 0} \frac{\left(\alpha_{t,1}(a) - a\right) \star \left(\alpha_{t,1}(b) - b\right)}{t}
= \lim_{t \to 0} \frac{\alpha_{t,1}(a) - a}{t} \star \lim_{t \to 0} \frac{\alpha_{t,1}(b) - b}{t}
= (d(a) + \sigma(a)) \star (d(b) + \sigma(b))
= d(a)\sigma(b) + \sigma(a)d(b).
\]
References

