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Abstract: Generation of exactly solvable quantum systems in non-relativistic quantum

mechanics from an already analytically solved quantum system is presented using extended

transformation method. The bound state quantized energy spectra and the corresponding

wavefunctions of the generated potentials are obtained. It is also shown that eigenfunctions of

the new quantum systems can easily be normalized.
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1. Introduction

In non-relativistic quantum mechanics maximum information of a quantum system can

be had when one knows the exact solutions of the corresponding Schrodinger equation.

However, exact analytic solutions are possible only for a few set of quantum systems.

The next best thing to do is to find approximate analytical solutions of a given potential

by appropriate approximation techniques. In such situations, to work efficiently, it is

always desirable to have an exactly solvable potential (ESP) similar to the given potential

whose solution is required. A mapping procedure [1,2] is developed to map an already

exactly solved quantum system (QS) to various exactly solved quantum systems. The

method is based on a transformation called extended transformation (ET) which includes

a coordinate transformation (CT) followed by functional transformation (FT) and a set of

plausible ansatz to restore the transformed equation to a standard Schrodinger equation
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form. In our scheme we start from a known analytically solved QS and transformed it

to generate a class of new exactly solvable quantum systems. When the original QS has

a multiterm potential, then in general it is possible to generate a number of different

solvable QS, depending on the number of ways the various term(s) of the original QS is

grouped, which specifies a certain transformation function gB (r) (equation (8)) but more

often than not we get Sturmian QSs. In transformation method the normalizability of

the eigenfunctions of the generated QS can easily be verified in most cases. We discuss a

procedure to regroup this set of Sturmian QS to a normal/ physical QS.

The plan of the paper is as follows: In section 2 the formalism of ET is given briefly.

In section 3 generation of exactly solvable quantum systems from the Manning-Rosen

(M-R) potential is discussed that includes first and second generation quantum systems.

The important question of normalizability of the generated eigenfunctions are discussed

in section 4. Discussion is given in section 5 with reference to case for α = 0 and/or

α = 1. Concluding remarks are given section 6 .

2. Formalism

The radial part of the s- wave Schrodinger equation for the potential VA (r) in DA-

dimensional Euclidean space ( � = 1 = 2m):

Ψ
′′
A (r) +

DA − 1

r
Ψ

′
A (r) +

[
EA

n − VA (r)
]
ΨA (r) = 0 (1)

where r is a dimensionless modulus of radius vector in the DA−dimensional space.

The normalized eigenfunctions ΨA (r) and energy eigenvalues EA
n are known for the

given VA (r) . Prime denotes the differentiation of the wavefunction with respect to its

argument.

We now invoke a coordinate transformation

r → gB (r) ,

followed by a functional transformation

ΨB (r) = f−1B (r)ΨA (gB (r)) , (2)

where the transformation function gB (r) and the modulated amplitude fB (r) have

get specified within the framework of ET.
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The transformed B-QS after implementing ET on the already solved A-QS takes the

form:

Ψ
′′
B (r) +

(
d

dr
ln

f 2
Bg

DA−1
B

g
′
B

)
Ψ

′
B (r)

+

[(
d

dr
ln fB

)(
d

dr
ln

f
′
Bg

DA−1
B

g
′
B

)
+ g

′2
B

(
EA

n − VA (gB (r))
)]

ΨB (r) = 0. (3)

The dimension of the Euclidean spaces of the transformed quantum system, henceforth

called the B- quantum system (B-QS) can be chosen arbitrarily, let it be denoted by DB.

This requires that the co-efficient of Ψ
′
B (r) in equation (3), must be:

d

dr
ln

f 2
Bg

DA−1
B

g
′
B

=
DB − 1

r
=

d

dr
ln rDB−1 (4)

which fixes fB (r) as a function of gB (r) and its derivative.

From equations (2) and (4) ,we obtain

ΨB (r) = g
′− 1

2

B g
DA−1

2
B r−

DB−1

2 ΨA (gB (r)) . (5)

The transformation function gB (r) is at least three times differentiable.

The corresponding second order equation for the B-QS in DB− dimensional space

becomes:

Ψ
′′
B (r) +

DB − 1

r
Ψ

′
B (r) +

[
1

2
{gB, r}+ g

′2
B

(
EA

n − VA (gB (r))
)]

ΨB (r) = 0 (6)

with Schwartzian derivative symbol

{gB, r} =
g

′′′
B (r)

g
′
B (r)

− 3

2

(
g

′′
B (r)

g
′
B (r)

)2

. (7)

In case mutiterm A-QS to implement ET we have to select one or more term(s) of

VA (gB (r)) as working potential and is designated by V W
A (gB (r)) .

In order to mould equation (6) to the standard Schrodinger equation form, following

plausible ansatz have to be made which are an integral part of the transformation method:

g
′2
BV

W
A (gB (r)) = −EB

n , (8)

g
′2
BE

A
n = −V

(1)
B (r) , (9)

−g
′2
B

(
VA (gB (r))− V W

A (gB (r))
)
= −V

(2)
B (r) , (10)

1

2
{gB, r} = −V

(3)
B (r) . (11)
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These ansatz leads the B-QS potential VB (r) as:

VB (r) = V
(1)
B (r) + V

(2)
B (r) + V

(3)
B (r) . (12)

Further, it is to be noted that, the equation (8) specifies the functional form of the

transformation function gB (r).

The familiar radial Schrodinger equation for B-QS in DB−dimensional spaces takes

the form

Ψ
′′
B (r) +

DB − 1

r
Ψ

′
B (r) +

[
EB

n − VB (r)
]
ΨB (r) = 0. (13)

3. Generation of exactly solvable quantum systems from the

Manning -Rosen potential

We have considered the Manning-Rosen quantum system [3-8] as a typical representative

of an exactly solvable non-powerlaw quantum system whose only s-wave bound state

solutions are possible/ available.

The potential is denoted as VA (r)and is:

VA (r) =
1

b2

[
α (α− 1) exp

(−2r
b

)
(
1− exp

(− r
b

))2 − A exp
(− r

b

)(
1− exp

(− r
b

))
]

(14)

where A and b are constants but the screeing parameter b has dimension of length

which has a potential range 1
b
.

It is found that the potential VA (r) at r = r0 has a relative minimum for α > 1

where r0 = b ln [1 + 2α (α− 1) /A] . For α = 0 and/or α = 1 the potential reduces to the

Hulthen potential.

The discrete energy eigenvalues are

EA
n = − 1

b2

[
A− α

2 (α + n)
− n (n+ 2α)

2 (α + n)

]2
(15)

with

n = 0, 1, 2, 3, .....nmax., nmax =
√

A+ α (α− 1) − α.

The general quantum condition is given by

α + λA −
√

A− α + α2 + λ2
A = −n (16)

where

λA =
√
b2 (−EA

n ).

The corresponding radial wavefunctions are given by

ΨA (r) = N (1− z)α zλA
2F1 (a, b, c, z) (17)
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where

z = exp
(
−r

b

)
, (18)

a = α + λA −
√
A− α + α2 + λ2

A, (19)

b = α + λA +
√
A− α + α2 + λ2

A, (20)

and

c = 1 + 2λA. (21)

3.1 First Order transformation

Applying ET on the A-QS potential, one obtains the transformed equation for the B-QS

for (DB = D) as follows:

Ψ
′′
B (r) +

D − 1

r
Ψ

′
B (r) +

[
1

2
{gB, r}+ g

′2
B

(
EA

n − VA (gB (r))
)]

ΨB (r) = 0. (22)

Choosing

V w
A (gB (r)) = −

A exp
(
−gB(r)

b

)
b2
(
1− exp

(
−gB(r)

b

)) (23)

as working potential and utilizing equation (8), the transformation function gB (r) is

found as

gB (r) = 2b ln sec (ηnr) (24)

where

ηn =
1

2b

√
−EB

n(− A
b2

) . (25)

Equations (9)and (24) yield:

V
(1)
B (r) = C2

B tan2 (ηnr) (26)

where C2
B is the characteristic constant of the generated B-QS obtained from the

transformation of A-QS and is

C2
B = 4b2η2n

(−EA
n

)
. (27)

The equation (27) subsequently provides us the B-system energy eigenvalues.



150 Electronic Journal of Theoretical Physics 7, No. 23 (2010) 145–154

The equations (10) and (24) lead to

V
(2)
B (r) = 4η2nα (α− 1) cot2 (ηnr) . (28)

Again equations (11) and (24) yield

V
(3)
B (r) = −η2n sec

2 ηnr + 3η2n csc
2 2ηnr. (29)

The multiterm B-QS potential VB (r) is found from equation (12)as :

VB (r) = 3η2n csc
2 (2ηnr)− η2n sec

2 ηnr + C2
B tan2 ηnr + 4η2nα (α− 1) cot2 ηnr (30)

which specifies a Sturmian QS and is denoted by B-SQS.

The characteristic constant C2
B of the B-QS can also be written as

C2
B =

EB
n

A

[
A− α

2 (α + n)
− n (n+ 2α)

2 (α + n)

]2
. (31)

The expression (31) is utilized to find the energy eigenvalues of the B-SQS and is

EB
n = AC2

B

[
A− α

2 (α + n)
− n (n+ 2α)

2 (α + n)

]−2
. (32)

The exact eigenfunction ΨB (r) of the generated B-SQS comes out from equation (5)

as:

ΨB (r) = NBr
−D−1

2 (cot ηnr)
1
2 sin2α (ηnr) cos

2λA (ηnr) 2F1

(−n, b, c, cos2 ηnr
)
. (33)

As always the potential VB (r) is n− dependent through n−dependence of ηn . This

special type of energy dependent potential is equipped with only a single normalized

eigenstate. The Sturmian form of B-QS comprises of a finite set of quantum systems. This

Sturmian form of B-QS can be converted to a normal quantum system by a case specific

regrouping technique, where we have to redefine the parameters of A-QS preserving the

type of constraint equation(s).

To make ηn n-independent we make A→ An by setting A =
(

EB
n

4s2

)
by using the

constraint equation (16), where a scale factor s is introduced. This leads to ηn → η = s.

Therefore, the normal/physical form of the newly constructed B-QS potential comes

out to be:

VB (r) = 3s2 csc2 (2sr)− s2 sec2 sr + C2
B tan2 sr + 4s2α (α− 1) cot2 sr. (34)

As a consequence the expression for quantized energy eigenvalues and energy level

spacing of the constructed B-QS are found as:

EB
n = 4s2

[
n2 + 2 (αλB + αn+ λBn) + α

]
(35)
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and

�EB
n = 4s2 [2 (n+ λB + α) + 1] , (36)

where

λB =
CB

2s
.

The constraint equation for B-QS is obtained as:

2α s+ CB −
√
EB + C2

B + 4s2α (α− 1) = −2sn.

The corresponding s-wave exact energy eigenfunctions of the constructed B-QS comes

out to be:

ΨB (r) = NBr
−D−1

2 (cot sr)
1
2 sin2α (sr) cos2λB (sr) 2F1

(−n, 2 (α + λB) + n, 1 + 2λB, cos
2 sr

)
.

(37)

The familiar Schrodinger equation in D- dimensional Euclidean space for l = 0 is

found as:

Ψ
′′
B (r) +

D − 1

r
Ψ

′
B (r) +

[
EB

n − VB (r)
]
ΨB (r) = 0. (38)

From the multiterm B-QS potential, the working potential can be chosen in (24 − 1)

i.e. 15 different ways. But we consider the single term working potential only for simplic-

ity. It appears that the choice of C2
B tan2 ηnr as the working potential reverts it back to

the parent QS.

3.2 Second order transformation

Application of extended transformation on the B-SQS as obtained from equation (30) we

can generate another new Sturmian quantum system and is designated by C-QS, by the

above procedure.

From the multiterm B-SQS , we have chosen −η2n sec
2 ηnr as the working potential

so that

g
′2
CV

w
A (gC (r)) = −EC

n , (39)

with

V w
A (gC (r)) = −η2n sec

2 ηngC (r) . (40)

The set of ansatz required to write equation (6) in the form of the standard Schrodinger

equation form can be written as:

1

2
{gC , r}+ g

′2
C

(
EB

n − VB (gC (r))
)
= EC

n − VC (r) . (41)
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The transformation function is found as,

gC (r) =
1

η
arcsin

[
tanh

(√
EC

n r
)]

. (42)

The Sturmian form of the newly generated C-SQS potential comes out to be:

VC (r) =

(
C2

BE
C
n

η2
− C2

C − EC

4

)
tanh2

√
EC

n r +
3

4
EC

n

(
sinh

√
EC

n r
)−2

+

16α (α− 1)EC
n

(
sinh 2

√
EC

n r
)−2

. (43)

Where C2
C is the characteristic constant of C-SQS.

The energy eigenvalues EC
n of the C-SQS is found as

EC
n = − C2

C

4 [n2 + 2 (αλB + αn+ λBn) + α]
. (44)

The normalized energy eigenfunction ΨC (r) of the generated C-SQS is found for

(DB = 1, DC = D) as follows:

ΨC (r) = NCr
−D−1

2

(
tanh

√
EC

n r
)2α− 1

2

⎛
⎝ 1

cosh
(√

EC
n r

)
⎞
⎠

2λB

×

2F1

(
−n, 2 (α + λB) + n, 1 + 2λB,

1

cosh2
√
EC

n r

)
. (45)

However, the present C-QS is Sturmian in nature which can not be made normal /

physical.

Our choice of 3η2n csc
2 2ηnr as working potential will also lead to a different form of

Sturmian potential which can be found merely by inspection. This is also an example

of a stubborn potential which can not be made normal / physical by any case- specific

regrouping procedure.

4. Normalizability of the generated quantum systems

The normalizability condition of the wave function for the generated bound state QS

obtain by the ET method can be proved under fairly general conditions, as it seems to

preserve the normalizability property to quite a good extent. Normalizability condition

for DB- dimensional B-QS eigenfunction is

|NB|2
∞∫
0

∣∣∣Ψ(n)
B

∣∣∣2 rDB−1dr = finite. (46)

The Ψ
(n)
B is given by equation (37) and it can be reduced to
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|NB|2 < VA(r) >

−EB
n

= 1 (47)

since

g
′2
B (r) =

−EB
n

VA (gB(r))
. (48)

Hence all the Ψ
(n)
B (r) are normalizable for which EB

n �= 0. For any physical/ real QS,

< VA(r) > exists ensuring normalizibility of daughter (B-QS). As such, the wavefunc-

tion of the generated QS are always normalizable corresponding to non-null eigenvalues,

when the wavefunctions of the parent QS are normalizable. Hence the wavefunctions of

the C-QS is also normalizable. The above expressions shows that it is a positive fea-

ture of the transformation procedure, that more often than not the wavefunction of the

newly generated QS is normalizable. This is true that unless the transformation function

gB (r) is not badly behaved so far its local and asymptotic properties are concerned, the

transformation carries over the normalizability of the parent QS to the daughter QS.

5. Discussion

It is found that the Manning-Rosen potential can be reduced to the Hulthen potential

[9] by setting α = 0and/or α = 1. Implementing ET on that Hulthen potential the

constructed physical / normal first generation potential, quantized energy eigenvalues

and the corresponding s-wave energy eigenfunctions in D- dimensional spaces are found

for simplicity α = 0 in following forms:

VB (r) = 3s2 csc2 2sr − s2 sec2 sr + C2
B tan2 sr, (49)

EB
n = 4s2n (n+ 2λB) (50)

with energy level spacing

ΔEB
n = 8s2

(
n+ λB +

1

2

)
(51)

and

ΨB (r) = NBr
−D−1

2 (cot sr)
1
2 cos2λB sr 2F1

(−n, n+ 2λB, 1 + 2λB, cos
2 sr

)
. (52)

Conclusions

We have presented a method of generation of exactly solved quantum systems in non

relativistic quantum mechanics using the extended transformation method (ET) in DB-

dimensional Euclidean spaces from a given non-powerlaw potential in 1−D space. In ET,

DB can be chosen arbitrary in any integer dimensions and also in fractional dimensions
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although we have yet to have a meaningful QS in fractional dimensions. It is evident that

the ET may be applied successively any number of times to generate new QSs, when we are

considering a non-powerlaw potential. The Manning Rosen potential shown in equation

(14) is invariant under the interchange of α ↔ 1 − α, which is reflected in the exactly

solvable daughter potentials. Although the potential is symmetric under α ↔ 1 − α,

the symmetry is broken in the energy eigenvalues spectrum. But an important point to

be noted is that in order to generate third order exactly solved potential from the initial

exactly solved system we are required to go through second order generated potentials, ET

does not have the group composition law as the transformation depends on the working

potential (WP) of the parent QS. Therefore the ET does not have a group structure

in general. The inverse transformation is obtained when WP is chosen as the term

containing the characteristic constant, coming from the energy term of the parent QS.

Here Manning-Rosen quantum system is taken as typical representative of non-powerlaw

potential whose exact analytic solutions for s-wave (l = 0) are only possible. In addition

approximate l- state solutions of the D− dimensional Schrodinger equation for the MR

potential [10] is possible. In case of non-power law potential the transformed quantum

system is always comes out as Sturmian quantum system, the transformation function is

non factorizable2 unlike the power law type potentials. The Sturmian form of quantum

systems can be made normal/ physical by case-specific regrouping procedure. The first

order application of the ET on the Manning -Rosen potential generates a potential similar

to the Harmonic plus linear type potential with finite number of eigenstates. It is also

to be noted that the wavefunctions of the generated quantum systems are almost always

normalizable.
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