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Abstract: The five-dimensional version of the quantum relativistic Klein-Gordon wave
equation is assumed to be a more fundamental description for the dynamics of the single particle
without spin. The meaning of the renormalization procedure in QFT and the Planck’s mass
one are briefly discussed from this point of view.
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1. Introduction

The formulation of relativistically covariant wave equations was one of the first deci-

sive steps towards the (not yet reached) unification of quantum mechanics and relativity.

Maiorana has given various important, and may be not completely understood to date,

contributes to this subject (refs. 1, 2, 3, 4). Therefore, it seems right to speak about

the wave equations in a publication dedicated to his memory. We will express some ele-

mentary qualitative considerations on the relationship between this classical subject and

some more recent questions of the modern quantum field theory (QFT) and the quantum

gravity.
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2. The Klein-Gordon Equation

The prototype of the quantum-relativistic wave equations consists of well known

four-dimensional Klein-Gordon equation (KG4):
[
~222 + m2c2

]
ψ(x0, x1, x2, x3) = 0 (1)

where m is the particle mass. We will limit our line of reasoning to this particular wave

equation, since it will be immediately applicable to any other similar equation.

The KG4 is a quantum translation of the ordinary dispersion law for free relativistic

particles and then it is valid for this kind of particles. It may be derived from the general

pentadimensional Klein-Gordon equation (KG5) :
[
~222 − (~/c)2∂2

τ

]
ϕ(x0, x1, x2, x3, τ) = 0 (2)

if

ϕ(x0, x1, x2, x3, τ) = ψ(x0, x1, x2, x3)e
−imc2τ
~ (3)

in which τ is a scalar of Universe. In general, the KG5 does not satisfy the usual dispersion

law for the free relativistic particle and is, therefore, applicable to real interacting particles

or to virtual particles.

If one defines the mass operator as i(~/c2)∂τ , the wavefunctions represented by the

eq.(3) are eigenfunctions of this operator with eigenvalue m. These eigenfunctions satisfy

the eq.(1) and are associated with free real particles having a definite mass.

A generic linear superposition:

ϕ(x0, x1, x2, x3, τ) =
∑

j

ψmj
(x0, x1, x2, x3)e

−imjc2τ

~ (4)

will be associated with a particle having a non definite mass (real interacting particle or

virtual particle). The Fourier analysis of the (4) gives the following relationship between

the dispersion of the mass, ∆m and the dispersion of the τ variable, ∆τ :

(∆mc2)(∆τ) ≈ ~ (5)

In the case of the real interacting particles, considered only within the limits of the

interaction area, the dispersion ∆mc2 is of the same order as the interaction energy

Eint, thus one can write Eint(∆τ) ≈ ~. Therefore, if we assume the KG5 to be the

fundamental equation, the KG4 is obtained as approximation in the limit (∆m)/m <<

1, that is Eint<< mc2. In other terms, the KG4 is an approximation which is no more

valid when the energy exchanged with other fields or particles during the interaction is

sufficiently high to create one or more copies of the particle under consideration.

The parameter τ must not be considered as a fifth spacetime coordinate; it admits an

immediate physical interpretation in the ordinary four-dimensional spacetime. In fact, if

one assumes the existence of a set of paths {xµ = xµ(τ) ; µ = 0, 1, 2, 3} in the ordinary

spacetime, such as dxµ/cdτ = γµ (so called Breit equation), the KG5 takes the form:

(iDτ )
2ϕ(x0, x1, x2, x3, τ) = 0 (6)
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which is a constraint on the variation of ϕ along these paths. This is if the quadrivelocities

(Dirac matrices) γµdon’t depend explicitly on τ . D is the operator of total derivation.

Therefore, these paths consist in series of infinitesimal “jumps” at light speed along

the spacetime, a sort of generalization of the Zitterbewegung.

The paths orientation along the t axis is not, in general, definite. In other terms, both

the past and the future lightcones having their origin in an arbitrarily chosen point on a

certain path, do not always contain portions of that path. But, if the eq. (3) is valid:

dτ

dt
= [τ,H] + ∂tτ = ∂tτ =

(
dx0

cdτ

)−1

= γ0 (7)

since in this case H is the ordinary Klein-Gordon Hamiltonian, which not depend on

τ . Consequently, t = γ0τ + t0, that is, the paths have a fixed time orientation given

by the sign of the eigenvalue of γ0. So we arrive to the conclusion: in respect of the

interactions localizing the particle with an uncertainty greater than ~/mc (that is for

interaction of energies Eint<< mc2), the particle is a time orientated process, its dynamics

being described by the KG4. Otherwise it is not a t-orientated process (creations and

annihilations of the particle take place, which diffuse it along the spatial radius ~/mc)

and its dynamics is plausibly described by the KG5.

The equations (1), (2) may be immediately generalized to a curve spacetime, by

expressing the Dalembertian operator in the appropriate coordinates. If one admits

that the gravitation is described by the spacetime curvature, as it is, for example, in the

general relativity, one has immediately a description of the gravitational field effect on the

particle. This effect is manifested even for m = 0, as in any metric theory of gravitation.

Nevertheless, in the terms of the KG5 the gravitation is merely the dependence of the

quadrivelocities γµ on xµ.

3. Renormalization: A heuristic Justification

From the above reasoning follows that during the high energy interactions (Eint>>

mc2) the particle dynamics would be described by using the KG5 (for example, by adding

the proper terms describing the interaction with the external field). The formulation of

the modern quantum field theory (QFT) starts with a translation of the KG4 into the

second quantization formalism. This option enables to assume a definite time orientation

for all the interacting particles; after all, the time coordinate used by the observer in

order to coordinate the events is t, not τ . This results in necessity to renormalize the

calculated physical observables1. In fact, at each instant t0, the particle now appears to

be dispersed in the cloud of its various locations at that time t0 [the values of xi(τ), with

i = 1, 2, 3, corresponding to the various values of τ for which one has t(τ) = t0], extended

upon a space region of size ~/mc. Naturally, the charge, the mass and the total quantum

1 For a discussion about the possibility to treat the problem involving several interacting particles by
using a formalism of first quantization, remaining at the ontological level of the KG5, one may see ref.
5.
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numbers of the cloud and the single particle ones are the same. In fact, any time when

the particle passes through the hyperplane t = constant in the opposite directions, the

contributions to these observables elide each other.

An external interaction distorts the “form” of this cloud. Since the only physical

reality consists of interaction events with the outside, the physically relevant values must

be calculated by subtracting the “unperturbed” cloud from the “distorted” cloud one.

Any renormalization procedure is based on this principle. So, the renormalization is far

from being an “arbitrary” procedure or one introduced “ad hoc” only in order to arrive

to physically defined results, but it is a necessity resulting from the option to have a

t-oriented theory. In the terms of the QFT, it consists of subtracting of the unmodified

terms, which express the particle “self interaction” by through its own fields, from those

modified by the external interaction.

4. Limits of Applicability and Planck’s Mass

The particular expression of the limit Eint ≈ mc2, in which the KG5 is substituted

by the KG4, certainly depends on the field that mediates the interaction. For the elec-

trostatic field, this limit is reached when the distance r between two particles of charge e

goes below the value r0 at which the potential energy is equal to the rest energy : e2/r0

= mc2. If the interaction is mediated by a photon exchange, the limit is reached when

the photon wavelength λ goes below the value λ0 at which the photon energy is equal to

the rest energy: ~c/λ̄0 = mc2, where λ̄0 = λ0/2π. Then, in the case of electromagnetic

interaction we have two different values of the collision parameter at which one passes

from the KG5 description to the KG4 one: r0 = e2/mc2 (the so called classical radius) for

the static interaction, λ̄0 = ~/mc (the so called Compton wavelength) for the radiative

interaction. Their ratio is a fundamental constant of the Universe : the fine structure

constant α, and then it can’t be changed. Since α is much less than 1, the KG4 is not

more valid, in general, at distances comparable to λ̄0. In order to describe the dynamics

at shorter distances, it is necessary to use the KG5 or, according to the consolidated

practice, to pass to QFT formalism by using the second quantization.

Now let’s consider the gravitational interaction. One has now the static limit for

Gm2/r0 = mc2, that is for r0 = Gm/c2. In the case of graviton exchange the limit is still

expressed by ~c/λ̄0 = mc2, that is λ̄0 = ~/mc, since gravitons and photons manifest the

same dispersion laws.

The ratio of r0 and λ̄0 is now Gm2/~c and it depends on m; one has r0 = λ̄0 for m =

MPlanck = (~c/G)1/2. For the mass values less than Planck’s mass is r0 < λ̄0, while for

masses greater than Planck’s mass is r0 > λ̄0. In general, r0/λ̄0 = (m/ MPlanck)
2.

From this point of view, the Planck’s mass is a parameter which controls the passage

between two different modes of violation of the KG4. In the terms of this reasoning, the

fundamental description of the dynamics is given by the KG5, which is a relativistically

invariant, continuous equation. Therefore, do not seem to emerge, for Eint > MPlanckc
2,

transitions to finite or discrete geometries with the appearance of quantized spacetime
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intervals or breaking of the relativistic invariance.
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