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Abstract: An early paper (1932) by Majorana, that has received but scant attention, is
reexamined in light of later developments. This pioneering paper constructs a relativistically
invariant theory of arbitrary spin particles, develops and utilizes infinite dimensional
representations of the homogeneous Lorentz group, and provides a mass spectrum for elementary
particles. The relevance of Majorana’s approach and results to later and current research is
explained.
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We reproduce here the historical D. M. Fradkin 1966 paper whose role among the physicists of
high energy was decisive; since then espressions like ”Majorana mass”, ”Majorana spinors” and
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con Momento Intrinseco Arbitrario, translated by Italiam from Edoardo Amaldi.

Ignazio Licata†‡

c© Electronic Journal of Theoretical Physics. All rights reserved.

Keywords: Ettore Majorana, Elementary Particles
PACS (2006): 01.30.Tt, 01.65.+g, 11.30.-j

The paper “Teoria relativistica di particelle con momento intrinseco arbitrario”

by Ettore Majoran (1932) [1,2] is remarkable for the following reasons : (i) it is appar-

ently the first construction of a relativistically invariant theory of arbitrary half integer

or integer spin particle; (ii) it is apparently the first recognition, development, and appli-

cation of the infinite dimensional representations of the Lorentz group; (iii) it is a theory
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that provides a mass spectrum for elementary particles. This pioneering paper , dealing

with topics that in later years (and now!) have excited major interest, attracted little

or no attention at its publication, and since then it has received only scant mention in

several places [3-5]. The purpose of this present note is to rectify historical neglect by

describing to a larger audience the content of Majorana’s paper and placing his work in

the the context of later research.

The starting point in Majorana’s article is the single linear differential equation of

Dirac form

(
W

c
+ α · p− βMc)ψ = 0, (1)

Where α and β are numerical matrices, W is the energy, p is the momentum operator

and ψ is the multicomponent wavefunction. Unlike Dirac (1928) [6], he does not require

the dispersion relation

(
W

c
)2ψ = [p2 + (Mc)2]ψ, (2)

To be satisfied for each component. As is well known, the imposition of both requirements,

Eqs. (1) and (2), led Dirac [6] to certain commutation relation for α and β -relations that

Majorana does not assume. Many of the (finite dimensional) later higher spin theories

[Petiau (1936), Duffin (1938), Kemmer (1939), and Fierz and Pauli (1939)] [3, 7-12]

also have required the dispersion relation. In particular, the Dirac-Fierz -Pauli arbitrary

spin theories [10-12] essentially factorize Eq. (2) into two coupled first-oder equations.

For spin higher than one (spin value related to the number of components of ψ), these

coupled first-order equations not only yield the dispersion relation, which describes the

time development, but also yield additional restrictions on the wavefunction. These

restrictions are known as subsidiary conditions. By insisting only on the linear form

[Eq. (1)] but not the dispersion relation, one may avoid subjecting the wavefunction to

subsidiary conditions. For finite representational theory, this point was explained years

later by Bhabha [13]. An over- all brief summary of the invariant equations for finite

dimensions is given by Umezawa (1956)[14].

At the time that Majorana wrote his article, it was an embarrassing fact that the

original Dirac theory of the electron [6] introduced negative masses, i.e., that β has

eigenvalues ±1. In order to avoid this, Majorana set for himself the following problem :

Is it possible to have a relativistic invariant linear theory for which the eigenvalues of β

are all positive? In obtaining an affirmative answer, he was led to the infinite dimensional

representations of the Lorentz group.

Majorana’s arguments goes something like this: One of the conditions for relativistic

invariance of the Dirac-form equation is that the Lagrangian density (which, in conjunc-

tion with the variational principle, can be used to derive this equation) must be invariant.

A term of the density is ψ∗βψ, so this is a relativistic invariant. But if β has all positive

eigenvalues, the quantity ψ∗βψ must be positive definite. Hence, it is possible to make

a transformation ψ → φ so that ψ∗βψ → φ∗φ (this transformation is nonunitary and,

in the representation where β is diagonal is obviously accomplished by weighting the

components of ψ with the reciprocal square roots of the appropriate eigenvalues of β ).
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In terms of φ then, relativistic invariance of the Lagrangian density implies that φ∗φ is

an invariant to all Lorentz transformations. This is certainly true if one can represent

the Lorentz transformations in terms of unitary operators, i.e., if the generators of the

infinitesimal Lorentz transformations have a specific Hermitian character.

With this in mind, Majorana displays the generators of the infinitesimal Lorentz

transformations in the 4×4 space appropriate to operation on the coordinates, exhibits the

generator commutation relations which must be satisfied in any representation, and then

immediately gives the infinite dimensional Hermitian representations of these generators.

In detail, an infinitesimal Lorentz transformation on the coordinates [15] is given by

x
′
µ = (δµν + ξµν)xν = (1− 1

2
iξαβIαβ)µνxν , (3)

Where here ξµν are antisymmetric infinitesimals and Iαβ represent the six independent

group generators [16]. In this coordinate-base representation, the matrix components of

the generators are

(Iαβ)µν = i(δαµδβν − δαµδβν) (4)

Defining the space-space generators a and the space-time generators b by the relations

ai = −1

2
εijkIjk, bi = iIi4, (5)

One obtains by direct manipulation the commutation relations

[ai, aj] = iεijkak,

[bi, bj] = −iεijkak, (6)

[ai, bj] = iεijkbk.

For the infinite dimensional representations Majorana gives the matrix elements

(j, m|a1 − iεa2|j, m + ε) = [(j + εm + 1)(j − εm)]
1
2

(7)

(j, m|a3|j,m) = m

and

(j, m|b1 − iεb2|j + ελ,m + ε) = −1
2
λ{[(j + λ(m + ε)][j + 1 + λ(m + ε)} 1

2

(8)

(j, m|b3|j + λ,m) = 1
2
{[j + m + 1

2
(λ + 1)][j −m + 1

2
(λ + 1)]} 1

2
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Here, ε and λ are independently ±1, and non-indicated matrix element are zero. The

index m ranges from j to –j, and the range of j is either from 0 to ∞ by integer steps

from 1
2

to ∞ by integer steps.

Matrix elements identical with Majorana’s infinite dimensional Lorentz representa-

tions [Eqs. (7) and (8)] were given earlier by Weyl (1928) [17] in connection with se-

lection and intensity rules for the Schrödinger quantum mechanical problem of electric

dipole transitions for an atom. How ever, it seems probable that Majorana derived these

results himself. The fact that the three space-space generators a have the algebra of

angular momenta suggests the angular momentum basis for their representation which

Majorana employed [Eq. (7)]. The remaining three space-time generators b transform

under spatial rotation like a three vector, so in effect they carry one unit of angular

momentum. Thus, these generators have possible nonvanishing matrix elements between

a basis with angular momentum j and bases j, j±1 [18]. Consequently, the representa-

tion for all six generators involves all j values an integer apart (hence the fact that the

representation is of infinite dimension ). The ones exhibited by Majorana are not the

only infinite dimensional representations [18] nor does he make this claim, but he merely

states (accurately) that they are the most simple.

The problem of unitary infinite-dimensional representations of the inhomogeneous

Lorentz group was discussed years later by Wigner (1939,1948) [4] from a different stand-

point. Instead of proceeding from a definite wave equation and a postulated set of eigen-

functions on which the infinitesimal generators of the group act, Wigner assumed only

the existence of a linear relativistically invariant manifold, i.e., a set of states which map

into a superposition of themselves under the influence of a Lorentz transformation. This

invariant –theoretic approach, though more general and certainly more rigorous than

Majorana’s development, gives somewhat less physical information (especially kinetic

relation) and is of greater algebraic complexity. Following Wigner’s first paper on the

subject, the question of the infinite representation was investigated so little that in a later

paper, reviving the study, Dirac (1945) [19] wrote: “. . . .The group has also some infinite

representations which are unitary, These do not seem to have been studied much, in spite

of their possible importance for physical application. . . ..” Dirac and subsequent authors,

with the exception of Wigner [4] and Corson [6], make no reference to Majorana’s pio-

neering work even though many of them employ essentially the same approach. Further

detailed investigations of the infinite representations have been made by Gelfand and

Naimark (1946) [20], Harish –Chandra (1947) [21], Bargmann (1947) [22], and Gelfand

and Yaglom (1948) [23].

It is of interest to note that not only did Majorana give the infinite dimensional rep-

resentations involving the series of integer j (special case of j bounded from below by 0)

and the series of half –integer basis of angular momentum eigenfunctions of the Dirac

electron theory. Moreover, Majorana recognized that this representations were special

cases associated with a particular value (zero) of an invariant, namely a · b, of the ho-

mogenous Lorentz group. In fact, there are two invariants characterizing a representation
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of the homogenous Lorentz group. These are the quantities

1

2
IαβIαβ = (a · a− b · b), (9)

−1

8
εµναβIµνIαβ = (a · b),

which can easily be shown to commute with all the generators a and b. Consequently, in

a given representation, these invariants have a fixed value and may be used to characterize

the representation [21]. Thus, although Majorana recognized the role of one invariant

with reference to a generalization of his results, he did not pursue the question of the

group invariants to the extent of exhausting the possibility for generalization.

After Majorana developed the Hermition infinite dimensional representations of the

Lorentz transformation generators, he went back to the Lagrangian density expressed

in terms of the wavefunction φ, and again insisted on invariance of the density under

Lorentz transformations. This invariance requirement reduces to the insistence that the

wave equation [24]

(γµp
′
µ −Mc)φ

′
(x

′
) = 0, (10)

be form invariant under the simultaneous transformations

φ
′
(x

′
) = {exp[−1

2
iξαβIαβ]}φ(x), (11)

p
′
µ = (δµν + ξµν)pν .

From this requirement, it follows that

[Iαβ, γπ] = i(δβπγα − δαπγβ). (12)

These commutation relations together with the previously given infinite dimensional rep-

resentations of Iαβ (in terms of a and b) essentially determine the matrices γπ .

Majorana gives the results

(j, m|γ4|j, m) = −i(j +
1

2
), (13)

(j, m|γ1 − iεγ2|j + ελ,m + ε) = −1

2
iε{[j + λ(m + ε)][j + 1 + λ(m + ε)]} 1

2 ,

(j, m|γ3|j + λ,m) =
1

2
iλ{[j + m +

1

2
(λ + 1)][j −m +

1

2
(λ + 1)]} 1

2 ,

where again ε and λ are independently ±1, and nonindicated matrix elements are zero.

Finally, Majorana transformed the wave equation written in terms of φ [Eq. (10)

without the primes] into the Hamiltonian form written in terms of ψ [Eq. (1)]. For this

purpose, he utilized a nonunitary transformation

φ = Tψ, (14)

where

(j, m|T |j,m) = (j +
1

2
)−

1
2 , (15)
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nonindicated matrix elements being zero. In this way, he recovered Eq. (1), for which a

and β are given in terms of the γ’s and T [Eqs. (13) and (15)] by the relations

αi = TγiT, (16)

β = T 2, i.e., (j,m|β|j,m) = (j +
1

2
)−1.

Thus, Majorana had solved the problem of obtaining an explicit form of a wave equation

which was relativistically invariant and involved only positive energy eigenvalues.

The eigenvalues of β in Majorana’s infinite dimensional theory are (j + 1
2
)−1, where j

ranges over –all values in appropriate integer or half integer series. Consequently, the rest

mass eigenvalues for the infinite number of eigenfunctions in this theory are M(j + 1
2
)−1,

where M is an assigned constant. Apparently, Majorana was not interested in the idea of

a mass spectrum, and this disinterest was perhaps understandable in view of the limited

number of elementary particles known at that time [25]. Instead, Majorana emphasized

a particular eigenfunction corresponding to the rest –mass eigenvalue characterized by

j=s (s fixed) and he disregarded the other eigenfunctions as as being unphysical. He

admitted that sufficiently strong interactions would cause transitions to these other un-

physical states, so consequently he restricted the domain of applicability of the theory

to interactions sufficiently weak so as to cause no transitions. This line of argument is

exactly the same as the one used in Dirac electron theory at the time to prohibit tran-

sitions to the (unphysical) negative energy states. Also, for the physical eigenfunction

of rest mass M(j + 1
2
)−1, Majorana demonstrated that in the nonrelativistic limit , all

the components of the eigenfunction labeled by j different from s vanished by order v/c

or grater. Again, this demonstration is parallel to the Dirac electron theory for which

the “small” components of the positive energy eigenfunction vanish in the nonrelativistic

limit [26]. Thus in the nonrelativistic limit, the infinite dimensional eigenfunction has

only 2s+1 nonvanishing components in agreement with the ad hoc Pauli modification of

Schrödinger quantum mechanics. To have only 2s+1 components in the nonrelativistic

was one of the stated aims of Majorana’s theory. Moreover, this fact means that in the

rest system, The wavefunction transformed like an irreducible finite representation of the

rotation group corresponding to spin s, and since spin is essentially defined by rest-system

properties, the theory of Majorana was indeed one for a single pure spin associated with

his selected mass eigenvalue.

Majorana completed his article by mentioning the existence of imaginary mass eigen-

values in the theory, developing the expression for the eigenfunctions in a plane wave

state, and discussing the incorporation of an electromagnetic interaction by means of the

usual replacement pµ → pµ− (e/c)Aµ. In this connection, he discussed how one may add

a Pauli -type term (in the non-Hamiltonian form of the wave equation, essentially a term

of the form γµγνfµν where fµν Is the electromagnetic field tensor) in order to provide for

an anomalous magnetic moment [27]. His discussion of Pauli’s procedure involves the

only reference to published work that Majorana makes in his article, and even this is

indirect as he refers to Pauli as cited by Oppenheimer! [28].



Electronic Journal of Theoretical Physics 3, No. 10 (2006) 305–314 311

One may speculate why this article by Majorana occasioned little or no comment,

and practically disappeared into the archives. First of all, just shortly before its publi-

cation, the positron was discovered [25] and this invested the negative mass eigenvalues

(reinterpreted)of the Dirac electron theory with physical significance. Consequently, a

theory which had mass eigenvalues of only one sign and did not incorporate the feature

of antiparticles held little appeal. Furthermore, second quantization showed how to deal

with transitions between different mass eigenvalues, so the weak field limit restriction was

lifted. This meant that all of the mass eigenstates of Majorana’s theory were accessible.

But his mass spectrum was of the form M(s + 1
2
)−1, which says that the higher the spin,

the lower the mass. This relation was undesirable since it indicated that higher spin

particles should be the more stable ones. Here, again, any interest in Majorana’s theory

would be inhibited.

Also, the infinite dimensional representations of the Dirac matrices are unwieldy and

this is a disadvantage. Moreover , most physicists were unfamiliar with group theory, and

its study was not much in fashion, so the exhibition of infinite dimensional representation

of the homogeneous Lorents group did not find a very avid audience. Furthermore, the

later development of the Dirac-Fierz-Pauli [10-12] theory which was based on a finite

dimensional representation, had antiparticles, and proceeded from a factorized familiar

dispersion relation may have saturated the interest of those pursuing the nonexsistent

higher spin particles. Finally, the fact that Majorana’s ,written in terse, condensed ,

somewhat cryptic style, was published in Italian in a journal not very widely read at the

time [29] probably also contributed to its obscurity.

In recent years, Majorana’s theory has been reconstructed, discussed, and generalized

(always without reference to him). In this connection, one might mention the works of

Gelfand and Yaglom (1948) [23], Ginzburg (1956) [30], Gelfand, Minlos, and Shapiro

(1958) [31] and Naimark (1958) [32]. Some attempts have been made to combine a

number of irreducible dimensional representations in order to produce a mass spectrum

for which the values increase with increasing spin [33]
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