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Let us consider the emission of an α particle by a radioactive nucleus and assume

that such a particle is described by a quasi-stationary wave. As Gamov has shown, after

some time this wave scatters at infinity. In other words, the particle spends some time

near the nucleus but eventually ends up far from it. We now begin to study the features

of such a quasi-stationary wave, and then address the inverse of the problem studied by

Gamov.1 Namely, we want to determine the probability that an α particle, colliding with

a nucleus that has just undergone an α radioactive transmutation, will be captured by

the nucleus so as to reconstruct a nucleus of the element preceding the original one in

the radioactive genealogy. This issue has somewhat been addressed by Gudar, although

not deeply enough. It is directly related to our hypothesis according to which, under

conditions rather different from the ones we are usually concerned with, a process can

take place that reconstitutes the radioactive element.

Following Gamov, let us suppose that spherical symmetry is realized, so that the

azimuthal quantum of the particle near the nucleus is zero. For simplicity, we neglect for

the moment the overall motion of the other nuclear components. The exact formulae will

have to take account of that motion, and thus the formulae that we shall now derive will

have to be modified; but this does not involve any major difficulty. For the spherically

1 The author is referring here to G.Gamov, Z. Phys. 41 (1928) 204. [N.d.T]



294 Electronic Journal of Theoretical Physics 3, No. 10 (2006) 293–303

symmetric stationary states, setting, as usual, ψ = χ/x, we shall have

d2χ

dx2
+

2m

~2
(E − U) χ = 0. (1)

Beyond a given distance R, which we can assume to be of the order of the atomic di-

mensions, the potential U practically vanishes. The functions χ will then be symmetric

for E > 0. For definiteness, we require U to be exactly zero for x > R, but it will be

clear that no substantial error is really introduced in this way in our calculations. For

the time being, let us consider the functions χ to depend only on position, and —as it is

allowed— to be real. Furthermore, we use the normalization condition

∫ R

0

χ2 dx = 1. (2)

Let us now imagine that it exists a quasi-stationary state such that it is possible to

construct a function u0 which vanishes for x > R, satisfies the constraint

∫ R

0

|u0|2 dx = 1, (3)

and approximately obeys2 the differential equation (1) at the points where its value is

large. This function u0 will be suited to represent the α particle at the initial time. It is

possible to expand it in terms of the functions χ that are obtained by varying E within

a limited range. Let us then set

E = E0 + W. (4)

The existence of such a quasi-stationary state is revealed by the fact that for x < R the

functions χ, normalized according to Eq. (2), and their derivatives are small for small

W .

In first approximation, we can set, for x < R,

χW = χ0 + W y(x),

χ′W = χ′0 + W y′(x),

(5)

and these are valid (as long as U has a reasonable behavior) with great accuracy and for

all values of W in the range of interest. In particular, for x = R:

χW (R) = χ0(R) + W y(R),

χ′W (R) = χ′0(R) + W y′(R).

(6)

2 For an approximately determined value of t, while being almost real.
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Bearing in mind that Eq. (1) simply reduces for x > R to

d2χW

dx2
+

2m

~2
(E0 + W ) χW = 0, (7)

for x > R we get

χW = (a + bW ) cos
1

~
√

2m(E0 + W )(x−R)

+ (a1 + b1W ) sin
1

~
√

2m(E0 + W )(x−R),

(8)

having set

a = χ0(R), b = y(R),

a1 =
~χ′0(R)√

2m(E0 + W )
, b1 =

~ y′(R)√
2m(E0 + W )

.

(9)

Note that a1 and b1 are not strictly constant but, to the order of approximation for which

our problem is determined, we can consider them as constant and replace them with

a1 =
~χ′0(R)√

2mE0

, b1 =
~ y′(R)√

2mE0

. (10)

Moreover, since E0 is not completely determined, we shall fix it in order to simplify Eq.

(8); with this aim, we can shift R by a fraction of wavelength h/
√

2mE0. It will then be

found that Eq. (8) can always be replaced with the simpler one

χW = α cos
√

2m(E0 + W ) (x−R)/ ~

+ βW sin
√

2m(E0 + W ) (x−R)/ ~.

(11)

We set √
2m(E0 + W ) / ~ =

√
2mE0 / ~ + 2π γ = C + 2π γ, (12)

and, in first approximation, the following will hold:

2π γ ' W

~
√

2E0/m
=

W

~v
, (13)

v being the (average) speed of the emitted α particles. On substituting into Eq. (11), we

approximately find

χW = α cos(C + 2πγ)(x−R)

+ β′ γ sin(C + 2πγ)(x−R),

(14)
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with

β′ = β 2π~
√

2E0/m. (15)

For the moment, the χW functions are normalized as follows:

∫ R

0

χ2
W dx = 1.

We denote by ηW the same eigenfunctions normalized with respect to dγ. For x > R, we

then get

ηW =
2√

α2 + β′2γ2
[α cos(C + 2πγ)(x−R)

+ β′ γ sin(C + 2πγ)(x−R)] =
2√

α2 + β′2γ2
χW .

(16)

We expand u0, which represents the α particle at the initial time, as a series in ηW ,

and get

u0 =

∫ ∞

−∞
Kγ ηW dγ. (17)

Now, since u0 = χW for x ≤ R and therefore

Kγ =

∫ ∞

0

ηW u0 dx =
2√

α2 + β′2γ2

∫ R

0

χ2
W dx =

2√
α2 + β′2γ2

, (18)

on substituting into Eq. (17), we obtain

u0 =

∫ ∞

−∞

4 χW

α2 + β′2γ2
dγ. (19)

For small values of x, the different functions χW actually coincide and are also equal to

u0; it must then be true that

1 =

∫ ∞

−∞

4

α2 + β′2γ2
dγ = − 4π

αβ′
, (20)

and, consequently,

β′ = − 4π

α
(21)

must necessarily hold. Because of Eq. (13), if we introduce the time dependence, we

approximately get

u = eiEt/~
∫ ∞

−∞

4χW exp
{

2πi
√

2E0/m γt
}

α2 + 16π2γ2/α2 dγ. (22)

For small values of x the χW ’s can be replaced with u0, and we have

u = u0 eiE0t/~ exp
{
−α2

√
2E0/m t/2

}
. (23)



Electronic Journal of Theoretical Physics 3, No. 10 (2006) 293–303 297

This can be written as

u = u0 eiE0t/~ e−t/2T , (24)

quantity T denoting the time-constant (“mean-life”)

T =
1

α2
√

2E0/m
=

1

α2v
. (25)

In this way, and using also Eq. (21), both α and β′ can be expressed in terms of T :

α =
±1√
vT

=
±1

4
√

2(E/m)T 2
, (26)

β′ = ∓4π
√

vT = ∓4π 4
√

2(E/m)T 2. (27)

It will be clear that only one stationary state corresponds to a hyperbolic-like orbit in

the classical theory. The revolution period or, more precisely, the time interval between

two intersections of the orbit with the spherical surface of radius r, is given by

PW =
4

(α2 + β′2γ2)v
, (28)

and the maximum value is reached for W = 0:

PW =
4

α2v
= 4T. (29)

As a purely classical picture suggests, the probabilities for the realization of single sta-

tionary states are proportional to the revolution periods (see Eq. (18)), and T it-

self can be derived from classical arguments. Indeed, if a particle is on an orbit W

and inside the sphere of radius R, on average it will stay in this orbit for a time

TW = (1/2)PW = (2/v)/(α2 + β′2γ2), and the mean value of TW will be

TW =

∫ ∞

0

T 2
W dγ

/∫ ∞

0

TW dγ =
1

α2v
= T. (30)

However, we must caution that, by pushing the analogy even further to determine the

expression for the survival probability, we would eventually get a wrong result.

The eigenfunction u takes the form in Eq. (23) only for small values of x. Neglect-

ing what happens for values of x that are not too small, but still lower than R, and

considering, moreover, even the case x > R, from Eqs. (15) and (19) we have

u = eiE0t/~
[∫ ∞

0

4α cos(C + 2πγ)(x−R)

α2 + β′2γ2
e2πivγt dγ

−
∫ ∞

0

4β′γ sin(C + 2πγ)(x−R)

α2 + β′2γ2
e2πivγt dγ

]
, (31)

where α and β′ depend on T according to Eqs. (26), (27). Equation (31) can be written

as

u = eiE0t/~
[
eiC(x−R)

∫ ∞

0

(2α− 2iβ′γ)

α2 + β′2γ2
e2πi(vt+x−R)γ dγ

+ e−iC(x−R)

∫ ∞

0

(2α + 2iβ′γ)

α2 + β′2γ2
e2πi[vt−(x−R)]γ dγ

]
. (32)
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Since α and β′ have opposite signs and, for t > 0 and x > R, one has vt + x−R > 0, the

first integral is zero, while the second one equals

∫ ∞

0

(2α + 2iβ′γ)

α2 + β′2γ2
e2πi[vt−(x−R)]γ dγ = 2

∫ ∞

0

e2πi[vt−(x−R)]γ

α− iβ′γ
dγ

=





−4π

β′
e2π(α/β′)[vt−(x−R)] = −4π

β′
e−(α2/2)[vt−(x−R)],

0,

(33)

for vt− (x− R) > 0 and vt− (x− R) < 0, respectively. On substituting into Eq. (34)

and recalling that, from Eq. (12), C = mv/~, we finally find

u =





α eiE0t/~ e−imv(x−R)/~ e−t/2T e(x−R)/(2vT ),

0,

(34)

for vt−(x−R) > 0 and vt−(x−R) < 0, respectively. Let us now assume that the nucleus

has lost the α particle; this means that, initially, it is u0 = 0 near the nucleus. We now

evaluate the probability that such a nucleus will re-absorb an α particle when bombarded

with a parallel beam of particles. To characterize the beam we’ll have to give the intensity

per unit area, the energy per particle, and the duration of the bombardment. The only

particles with a high absorption probability are those having energy close to E0, with an

uncertainty of the order h/T . On the other hand, in order to make clear the interpretation

of the results, the duration τ of the bombardment must be small compared to T . Then

it follows that, from the uncertainty relations, the energy of the incident particles will be

determined with an error greater than h/T . Thus, instead of fixing the intensity per unit

area, it is more appropriate to give the intensity per unit area and unit energy close to

E0; so, let N be the total number of particles incident on the nucleus during the entire

duration of the bombardment, per unit area and unit energy.

Suppose that, initially, the incident plane wave is confined between two parallel planes

at distance d1 and d2 = d1 + ` from the nucleus, respectively. Since we have assumed

that the initial wave is a plane wave, it will be

u0 = u0(ξ), (35)

ξ being the abscissa (distance from the nucleus) of a generic plane that is parallel to the

other two. Then, for ξ < d1 or ξ > d2, it is u0 = 0. Furthermore, we’ll suppose d1 > R

and, without introducing any further constraint,

` =
hρ

m
√

2E0/m
=

hρ

mv
= ρ λ, (36)
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with ρ an integer number and λ the wavelength of the emitted α particle. We can now

expand ψ0 between d1 and d2 in a Fourier series and thus as a sum of terms of the kind

kσ eσ2πi(ξ−d1)/`, (37)

with integer σ. The terms with negative σ roughly represent outgoing particles, and thus

we can assume them to be zero. Let us concentrate on the term

kρ eρ2πi(ξ−d1)/` = kρ eimv(ξ−d1)/~ (38)

and let us set3

u0 = ψ0 + kρ eimv(ξ−d1)/~. (39)

The eigenfunctions of a free particle moving perpendicularly to the incoming wave, nor-

malized with respect to dE, are

ψσ =
1√

2hE/m
ei
√

2mE(ξ−d1)/~. (40)

Note that the square root at the exponent must be considered once with the positive sign

and once with the negative sign, and E runs twice between 0 and ∞. However, only the

eigenfunctions with the positive square root sign are of interest to us, since they represent

the particles moving in the direction of decreasing ξ. We can set

ψ0 =

∫ ∞

0

cE ψρ dE, (41)

wherein

cE =

∫ d2

d1

ψ0 ψ∗ρ dξ. (42)

In particular, we put

cE0 =

∫ d2

d1

ψ0
1√
hv

e−imv(ξ−d1)/~ dξ =
kρ`√
hv

. (43)

Since, evidently,

N = c2
E0

, (44)

one finds

N =
k2

ρ`
2

hv
. (45)

Let us now expand u0 in terms of the eigenfunctions associated with the central field

produced by the remaining nuclear constituents. Since only the spherically symmetric

eigenfunctions having eigenvalues very close to E0 are significantly different from zero

near the nucleus, we shall concentrate only on these. For x > R, the expression of these

3 Note that the author split the wavefunction of the incident particles into a term related to the principal
energy E0 (the second term in Eq. (39)) plus another term which will be expanded according to Eq.
(41). [N.d.T]



300 Electronic Journal of Theoretical Physics 3, No. 10 (2006) 293–303

eigenfunctions is given in Eqs. (16), (26), (27). Actually, the ηW given by Eq. (16) are

the eigenfunctions relative to the problem reduced to one dimension. In order to have

the spatial eigenfunctions, normalized with respect to γ, we must consider

gW =
ηW√
4πx

. (46)

In this way we will set

ψ0 =

∫ ∞

0

pγ gW dγ + . . . , (47)

wherein

pγ =

∫∫∫
dS gW ψ0 =

∫ d2

d1

2π x gW dx

∫ x

d1

ψ0 dξ. (48)

We can set

gW =
1√
4πx

[
Aγ ei(C+2πγ)(x−d1) + Bγ e−i(C+2πγ)(x−d1)

]
, (49)

and, from Eq. (16),

Aγ =
α− iβ′γ√
α2 + β′2γ2

ei(C+2πγ)(d1−R),

Bγ =
α + iβ′γ√
α2 + β′2γ2

e−i(C+2πγ)(d1−R).

(50)

We can now assume that d1, and thus d2, is arbitrarily large; but ` = d2 − d1 has to

be small because the duration of the bombardment, which is of the order `/v, must be

negligible with respect to T . Since 2πγ is of the same order as α2, that is to say, of the

same order as 1/vT (see Eq. (25)), 2πγ` is absolutely negligible. For d1 < x < d2 it is

then possible to rewrite Eq. (49) as

gW =
1√
4πx

[
Aγ eimv(x−d1)/~ + Bγ e−imv(x−d1)/~] , (51)

given Eqs. (50).

Let us now substitute this into Eq. (48), taking into account Eqs. (39) and (45).

We’ll simply have

pγ =
2πBγ√

4π

∫ d2

d1

e−imv(x−d1)/~ dx

∫ x

d1

eimv(ξ−d1)/~ dξ

=
hBγkρ`

i
√

4π m v
=

Bγh
3/2
√

N

i
√

4π m
√

v
= q Bγ, (52)

with

q =
h3/2N1/2

im v1/2
√

4π
. (53)

Substituting into Eq. (47), one gets

ψ0 = q

∫ ∞

0

BγgW dγ + . . . (54)
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and, at an arbitrary time,

ψ = eiE0t/~ q

∫ ∞

0

Bγ gW e2πivγt dγ + . . . , (55)

or, taking into account Eqs. (46) and (16),

ψ = eiE0t/~ q√
4πx

∫ ∞

0

2Bγ√
α2 + β′2γ2

χW e2πivγt dγ + . . . . (56)

We now want to investigate the behavior of ψ near the nucleus. There, assuming that

other quasi-stationary state different from the one we are considering do not exist, the

terms we have not written down in the expansion of ψ can contribute significantly only

during a short time interval after the scattering of the wave. If this is the case, ψ will

have spherical symmetry near the nucleus. We set

ψ =
u√
4πx

, (57)

so that the number of particles that will eventually be captured is
∫
|u2| dx (58)

(the integration range should extend up to a reasonable distance, for example up to R).

Substituting into Eq. (56), and noting that for small values of x we approximately have

χW = χ0, one obtains

u = q χ0 eiE0t/~
∫ ∞

0

2

α− iβ′γ
e2πi[vt−(d1−R)]γ dγ. (59)

Since, as we already noted, αβ′ < 0, and setting d = d1 −R, from Eqs. (26), we find

u =





q α χ0 eiE0t/~ e
−t− d/v

2T = q α e−iCd e
−t− d/v

2T , for t >
d

v
,

0, for t <
d

v
.

(60)

The meaning of these formulae is very clear: The α-particle beam, which by assumption

does not last for a long time, reaches the nucleus at the time t = d/v, and there is a

probability |qα|2 that a particle is captured (obviously, q2α2 ¿ 1). The effect of the

beam then ceases and, if a particle has been absorbed, it is re-emitted on the time scale

predicted by the laws of radioactive phenomena. If we set n = |qα|2, then from Eqs. (25)

and (53) we get

n =
2π2~3

m2v2T
N, (61)

which tells us that the absorption probabilities are completely independent of any hy-

pothesis on the form of the potential near the nucleus, and that they only depend on the
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time-constant T . 4

Equation (61) has been derived using only mechanical arguments but, as a matter

of fact, we can get the same result using thermodynamics. Let us consider one of our

radioactive nuclei in a bath of α particles in thermal motion. To the degree of approxima-

tion we have treated the problem so far, we can consider the nucleus to be at rest. Due

to the assumed spherical symmetry of the system, a particle in contact with the nucleus

is in a quantum state with a simple statistical weight. Such a state, of energy E0, is not

strictly stationary, but has a finite half-life; this should be considered, as in all similar

cases, as a second-order effect. Assuming that the density and the temperature of the

gas of α particles is such that there exist D particles per unit volume and unit energy

near E0, then, in an energy interval dE, we will find

D dE (67)

particles per unit volume. Let us denote by p the momentum of the particles, so that we

have

p =
√

2mE0, (68)

dp =
√

m/2E0 dE. (69)

4 The original manuscript then continues with two large paragraphs which have however been crossed
out by the author. The first one reads as follows:
“Since only the particles with energy near E0 are absorbed, we can think, with some imagination, that
every energy level E0 + W is associated with a different absorption coefficient `W , and that such `W is
proportional to the probability that a particle in the quasi-stationary state has energy E0 + W . From
(13), (21), (25), and (18), we then have

`W =
D

1 + 4T 2W 2/~2 . (62)

Since the number of incident particles per unit area and unit energy with energy between (E0 + W ) and
(E0 + W ) + dW is NdW , we must have

n = N

∫ ∞

−∞
`W dW = N D

π~
2T

, (63)

from which, comparing with (61),

D =
1
π

h2

m2v2
=

λ2

π
. (64)

This is a very simple expression for the absorption cross section of particles with energy E0, i.e., the
particles with the greatest absorption coefficient. If we set

N ′ = N
π~
2T

, (65)

then Eq. (61) becomes

n =
λ2

π
N ′, (66)

which means that the absorption of N ′ particles of energy E0 is equivalent to the absorption of N particles
per unit energy.” The second paragraph is not reproduced here since it appears to be incomplete. [N.d.T]
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E0 appears instead of E in the previous equations because we are considering particles

with energy close to E0. The DdE particles fill a unitary volume in ordinary space,

and in momentum space they fill the volume between two spheres of radii p and p + dp,

respectively. Thus, in phase space they occupy a volume

4π p2 dp = 4π m2
√

2E0/m dE = 4π m2 v dE. (70)

This volume contains
m2v

2π2~3
dE (71)

quantum states. Therefore, on average, we have

D
2π2~3

m2v
(72)

particles in every quantum state with energy close to E0. This is also the mean number

of particles inside the nucleus, provided that the expression (72) is much smaller than 1,

so that we can neglect the interactions between the particles. Since the time-constant

(“mean-life”) of the particles in the nucleus is T , then

n =
2π2~3D

m2vT
(73)

particles will be emitted per unit time and, in order to maintain the equilibrium, the

same number of particles will be absorbed. Concerning the collision probability with a

nucleus, and then the absorption probability, D particles per unit volume and energy are

equivalent to a parallel beam of N = Dv particles per unit area, unit energy and unit

time. On substituting, we then find

n =
2π2~3

m2v2T
N, (74)

which coincides with Eq. (61).


