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Exact Solution of Majorana Equation
via Heaviside Operational Ansatz
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Abstract: In context of a transformation between Majorana and Dirac wavefunctions, it
suffices to solve the related interactive Dirac problem and then apply the transformation
of variables on the Dirac wavefunction in order to obtain the Majorana wavefunction of
the given Majorana equation. Clearly, this connection between solutions continues to hold
if the free Majorana and Dirac equations are each coupled to an external gauge fieldle.g.,
Electromagnetism| via the minimum coupling prescription. Applying the formal solution scheme
Heaviside Operational Ansatz[heretofore, HOA] put forward in [ EJTP 1 (2004), 10-16], provides
an exact quadrature solution for the massive minimum-coupled Dirac equation, which may then
be transformed into the solution of the corresponding massive minimum-coupled Majorana
equation.
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1. Motivation and Layout

In this brief note, after a short recap of HOA methods, we shall apply the scheme to
obtain quadrature solutions of the Majorana equation[ref.1] minimal-coupled to an exter-
nal gauge field(e.g., electromagnetism). Crucial to this will be using the HOA methods to
solve the related minimal-coupled Dirac Equation. Once the Dirac solutions are known,
the Majorana solutions follow directly. The details of transforming of the Dirac wavefunc-
tions into solutions of the Majorana Equation are elaborated in great detail elsewhere[see
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for example the excellent review article by Valle ref.2] and will not be reproduced here.

2. Recap of HOA

To recall the full details of HOA results, see the original work[ EJTP 1 (2004), 10-16].
As pointed out therein,

‘Notwithstanding its quantum mechanical origins, the HOA scheme takes on a life
of its own and transcends the limits of quantum applications to address a wide variety
of purely formal mathematical problems as well. Among other things, the result pro-
vides a formula for obtaining an exact solution to a wide variety of variable-coefficient
integro-differential equations. Since the functional dependence of the Hamiltonian oper-
ator as considered is in general arbitrary upon its arguments(i.e., independent variables,
derivative operator symbols[including negative powers thereof, thus the possible inte-
gral character]), then its multivariable extension can be interpreted as the most general
variable coefficient partial differential operator. Moreover, it is not confined to being a
scalar or even vector operator, but may be generally construed an arbitrary rank matrix
operator. In all cases of course, its rank dictates the matrix rank of the wavefunction
solution.’

In the present case of the Majorana equation and related Dirac equation, we shall be
dealing with such a 4x4 matrix Hamiltonian structure and the solution wavefunction will
be of a 4-dimensional column vector character.

Recalling the fundamental HOA results, we let x,p,t respectively denote the con-
figuration space, momentum and time variables. The ~ denotes the operators, with H
and ¥ denoting the Hamiltonian and wavefunction of the phase space representation,
respectively. Also the «a, are otherwise free parameters as specified therein the original
work.

Hence for a given Hamiltonian and Initial-State, the configuration space solution
obtains from the quantum phase space solution as

~
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where

H

configuration space

2 X1, sy Ty
7ih611,‘...,7iﬁ01n,t (wlym-,xn) [ (ihapl + oy, -~~~77:hapn +anxn)

(—=thOzy , ..., —th0z,, ) — (—ihDzy + Y1D1, ..., —th0z,, + YnDn)
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To wit, via HOA the configuration space solution becomes

\Ilconﬁguration space (1'17 ceeey Tipy t)
St
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where

I o Tlyeeees Ty
Hconﬁguration space = Hconﬁguration space
—ihOzy s ey —ihOg, ,u ) (@1, oy Tn) = (BAP1 + 01 T1, o, hPn + QR Tn)

(—=thOzy ..., —thy,, ) — (—thZ1 + Y1P1, ..., —thZn + YnDn)

With that said, a relatively simplistic prescription results for actually using the Ansatz
to solve the problem,

Given the function H (1, eeey Ty D1y ovvey Py T)

A~

[respectively H (x1, ...., Tp; —ihO,,, ...., —ihd,, , t)] replace
(1, ceeey Ty P1y --oes Dy L) [respectively (21, ..., Tp; —ih0y, , ..., —1hO,,, , )] with
(thpy + a1y, ..., thp, + apxy; —ihZy + Ypr, ..., —ihZ, + Y1pp, t) in equation (3)

The result of course is the quantum phase space[respectively configuration space]
wavefunction for the quantum dynamics wave equation. Before addressing the Majo-
rana equation directly, just a comment on the «vand v parameters in the above formu-
lae. From the HOA, they are otherwise arbitrary except for the condition o + v = 1.
This is explained therein as a consequence of the arbitrary phase shift associated with
the quantum phase space wavefunction. Further, any choice of the parameters thus
constrained yields a Hamiltonian, which is dynamically equivalent|describes the same
physics] as any other choice. However, it is shown in therein that the Hamiltonian oper-
ator H (thd, + ax,—ih0, + yp,t), 3 a + v = 1 takes on the symmetric canonical form
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when o = v = % thusly H (ihap + 5, —ih0, + g,t) , O a+~ = 1. Notwithstanding this
and with an eye towards computational simplifications for particular classes of applica-
tions, it has been found that other choices than a = v = % greatly facilitates evaluation
of the integral transforms. Unless otherwise directed, the convention for avand ~ shall be
specified for particular cases, presently and elsewhere.

3. HOA Solution of Majorana Equation with Minimum-Coupled
Electromagnetic Gauge Field

First consider the related Dirac equation with minimum-coupled electromagnetic
gauge field
A (‘/Eh X2, X3, t) = Al (Ila T2, T3, t) ex1+A2 (ZUl, T, X3, t) ex2+A3 (1'1, X2, X3, t) €x3 5 AO (xlu T2, T3, t)
interaction

3
HDiracy,, Y0 = (mCQGO + 2 (a; (p; —edy) e+ 6Ao)> Up =ihd,¥p

7j=1

A (l’,y,Z,t) = Al (xaya Zat) €x + AQ (33,972,@ ey + A3 ($7972,t) €z, AO (x,y, Zat)

Vps
U po . :
Uy = . 4-component Dirac wavefunction
Ups
W py
Wp1,
W pa, . .
Up, = : 4-component Dirac Initial State
qu?)o (4)
W py,
100 O 0001
010 O 0010
G/O = s a]. =
00-10 0100
000 -1 1000
00 00—z 00 10
00 20 00 0-1
G/Q = y G/S =
0—00 10 00
10 00 0-100
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Similarly for the Majorana equation minimal-coupled to the EM gauge field.

—imca?py, + (iha” 0, — eAy) par =0

Ap, = (A ($17$2,x37t) = Al (./L'17$2,$3,t) exl + A2 (./L'17$2,$3,t) eX2 + A3 (J}l,l‘z,fl]g,t) eX3 ) AO ($17$2;x37t))

PM1 . .
PM = : 2 — component Majorana wavefunction
PM2
PM1, . ..
PM, = : 2 — component Majorana Initial state
PM2q

1,2,3

ot :usual 2 x 2 Pauli spin matrices o ,o0 = —ilpyo

()

Now the connection between the Majorana (5) py and Dirac [4] ¥pwavefunctions

subject to the Majorana self-conjugacy condition ¥ = U¢, is thoroughly discussed in

the excellent review article by Valle [ref 2]; only some key relationships between them are
reproduced here for convenience

¥p1
U, = VU po _ | xp Cws = og 0 g Transpose _ ¢p |
\IID3 02¢*D 0 09 O-QX*D
Uy
V1 V3 iU,
XD = ) 0-2¢*D - 5 QSD = s
Uy Upy —iT,
Majorana Self-Conjugacy condition Wp = U9, (6)
) Vpr +i¥h,
XD:\/%(PMQ‘HPMJ ) ngz\/LE(XD_F(bD):\/LE ‘
\IJDQ — Z\I’ES
, | Ty — 0T,
(bD = \/Lﬁ (pMQ _ZpM1) ) le — \/Lﬁ (XD - ¢D) — \/Li
Upy + 10,
Py
PM =
P Mo

So by way of (6), given the related Dirac wavefunction and subject to the Majorana
self-conjugacy condition U = U¢,, the Majorana wavefunction ascends naturally. More-
over, by way of the HOA method, substituting the Dirac Hamiltonian of (4) gives the
quantum phase space dynamics of the Dirac system for initial conditions and EM gauge
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fields of general form.

N ihapl + a1, ih@m + oo, ih@m “+ a3x3;
HDiraca . . . Up (21,22, 23; D1, P2, P3; t)
—ihOz, + Y1p1, —ihOy, + Yop2, —ih0y, + V3p3;t

= 1hoyVp (x1, 2, T3;p1, P2, P3; t)
mZa + 23: aj (—ih@xj +v;p; — €A (1hOp, + anx1,1h0p, + a2, 1h0p, + azxs, t)) c Up = N0, Ty
I=L\ +eAg (ih0y, + a1x1,ih0,, + owa, ihdy, + aszs;,t)
A (ih0p, 4+ a121,1h0)p, + a2, 1h0,, + azxs,t) =
Ay (thy, + cqe, 1R, + qae, th0p, + a3, t) ex,
+As (ih0p, + 121, iR0p, + oz, 1h0p, + a3xs,t) €x,
+As (ih0p, + a1x1,ih0p, + aox2,ih0p, + a3Ts3,t) €x,
, Ag (ihdy, + aqx1,1h0,, + ana, ihd,, + agzs,t)
Vp1
Upo

Up = . 4-component Dirac wavefunction
Ups

Wpy

(7)

Hence the configuration space dynamics for the related minimal-coupled Dirac system

YD configuration space (1, 22, 23, t) =
Ypy (@1, w2, 23,1)
Ypo (1,2, 23,1)
Yps (z1, w2, 23,1)

Ypy (21,22, 23,1) .
configuration space

mc2a0
—ihZj + v;p;
ihp1 + a1y, ¥ po,
D.j (&
iz)p) o, i®apy ., iz3p3 t —eAj | ihps + aszo ¥ po
_ e 2R T e 2h T e 2h -t (=i ) d 2 | dor dpod
= f el = 3 u) p1dp2dp3
J Vamh i Yazh _J_ Vimh - o ol 45 - ¥
T1y ey T = ihp3 + azxs,u DO3
P1;----» Pn ihpy + oy, ¥ poy
L1y ey Ty +edo | ihpy + azaa,
-
Pl Pn ihps + azz3, u
¥ poy
- Z1,T2,T3; ¥ Doy . .
¥ po : Transformed Initial-condition vector
P1,P2,P3;t =0 V¥ pog
¥ poy

(8)
where the explicit form of the I:IDiraC4X4 in the exponent 4x4 matrix integral is supplied
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as

mc
ihp1 + a1z,
+ecAg ihps + agwo,

ihp3 + azxs,t

c(—ihZ3 + v3p3)
ihpy1 + oy,
—eAs | ihpy + agza,

ihp3 + agws,t

c(—ihZ1 + v1p1)
ihp1 + o121,
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ihp1 + o1,
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me
ihp1 + o121,
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+i(e (—thZ2 + v2p2)
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—eAs ihpa + agxa,
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—mc
ihpr + a1z,
+ecAg ithps + azxa,

ihp3 + azxs,t

c(—ihZ1 + v1p1)

ihp1 + a1z,
—eAy ihpo + agzg,
ihpg + azx3,t
—i(c(—thz2 + v2p2)
ihp1 + o121,

—eAs thpa + azxa, )

ihp3 + azxs,t

c(—ihZ3 + v3p3)
ihp1 + a1z,
—eAs | ihpy + apza,

ihp3 + azzs,t

—mc
ihpr + a1@1,
tecAo | ihps + asxa,

ihp3 + aszxz,t

(9)



246 Electronic Journal of Theoretical Physics 3, No. 10 (2006) 239-247

yields by way of (6), the associated Majorana wavefunction for the dynamics of the
minimal-coupled system with arbitrary profile EM interaction and initial-conditions, in
terms of the quadrature solutions for the related Dirac system just calculated above in

(8)

\I/Dl (xla Z2,X3, t) + Z\I/*Dﬁl (xla Z2,X3, t)

S

P Mo )
Upo (21, 22, 23,1) — 1Whs (21, 22, 23, 1)

\Ile (xla Z2,T3, t) - Z\IJ*DZL (5171, T2, T3, t)

sk

Py, = ]
q;DZ (xla Z2,T3, t) —+ Z\D*Dg (xla T2,T3, t)

. P
Py configuration space =
PM; .
configuration space (10)
PMo . .
PMy configuration space = : Majorana Initial-State
PMyo

configuration space

1 \IJDl() (x17x27$37t) + i\Ij*D4o ($17$27 €3, t)

PMa = V2
o *
WU poy (21, 12,23, 1) — iV (21, T2, T3,1)
| Vb1, (w1, 22, 23, 1) — Wy (21, 22, 23, 1)
PMiy = V2

\IIDQO (‘rthu I3, t) + Z'\I[*D:ﬁo (ﬂfl, SEQ,Z’g,t)
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