
EJTP 3, No. 10 (2006) 225–238 Electronic Journal of Theoretical Physics

Majorana and the Investigation of
Infrared Spectra of Ammonia

E. Di Grezia1,2 ∗

1 Dipartimento di Scienze Fisiche, Università di Napoli “Federico II”
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1. Introduction

Because of the intensity and richness of its spectrum, ammonia has played a great

role in the development of microwave spectroscopy. It has provided a large number of

observable lines on which to try both experimental techniques and the theory. NH3

provides the simplest and most thoroughly worked out example of a class of spectra

which occupied and puzzle microwave spectroscopists for many years. In the paper of

1932 Fermi [1] discusses the influence of the ammonia molecule’s rotation on the doubling

of its levels. This doubling originates -according Dennis and Hardy [2]- in the oscillation

by which the nitrogen atom crosses the plane determined by the three hydrogens, i.e.,

due to inversion respect the plane of the three atoms of H influenced by the rotation of

molecule and he compared the theoretical results with the experimental results and he

found accords (inversion problem). This paper on NH3, together with other three articles

on the accidental degeneracy of the carbon dioxide molecule’s frequencies of oscillation

on the Raman effect in crystals, constitutes a series of investigations from the period
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1931-33 in which Fermi attempted to explain various molecular phenomena. His interest

in these studies is reflected in the book ”Molecules and crystals” [3]. Fermi’s interest in

this type of problem was to give a quantitative explanation to experimental observation

at the center of Institutes by Rasetti, which in the period 1929-1930 studied the Raman

effect in diatomic gas O2, N2. In particular the paper on the NH3 molecule is connected

to experiments conducted in Rome during the same period by E. Amaldi on the Raman

Effects with theoretical contribute by G. Palczek [4], and theoretical research by G.

Placzek and E. Teller [5] on molecular spectra for CO2 and NH3.

In reality W.W. Coblentz [6] in 1905 investigated the positions and fine structure of the

infrared bands of polyatomic molecules CO2, NH3. Coblentz observed two very intense

bands at λ = 10.7µ, 6.14µ, with a considerable weaker band at λ = 2.97µ.

Lately K. Schierklok [7] has re-examined the ammonia infra-red (IR) spectrum and in

addition to the bands found by Coblentz, he has found a band at λ = 2.22µ. Beyond this

he found two bands at λ = 1.94µ, 1.49µ whose intensity was about half that of the two

previous bands; so Schierklok observed six bands.

Historically the study of systems with several atoms, combining or not to form a

molecule, has interested chemists for many years through the rules of valence. But only

at the beginning of ”900 the physicists interpret these rules in the light of quantum

mechanics and the behavior of the constituents of atom with the spectral analysis of

radiation emitted by the atom. Heitler and London [8] connected the valence in the

formation of homopolar diatomic molecules with symmetry character of wave functions

of the outer electrons in each atom. The problem of the vibration groups of atoms

possessing geometric symmetry has been considered for the first time by C. J. Brester

[9]. A number of models representing particular molecules have been treated making

use of various assumptions to obtain the potential energy function. Historically the

first example is that of CO2 [10]. Hund [12] and Kornfeld [13] examined the spectra of

H2O, H2S, CO3 ion, NH3 [14]. Dennison [15] found the normal vibrations for models of

NH3 and CH4 assuming the forces to be central and Nielsen made a like treatment of

the CO3 ion. In all these investigations, the molecule was assumed to have a certain

geometry symmetry in its equilibrium configuration. So another more simple way to

analyze these models is to use the theory of vibrations [16]. In particular our interest will

be on the NH3- molecule which Coblentz in 1905 will start to study. In the present article

we will investigate how the NH3- molecule, in particular, has been studied qualitatively

by character of the vibration of symmetrical polyatomic molecules through the theory

of vibrations [12], [15], approximatively using the Wentzel-Kramers-Brillouin method of

approximation. And a quantitative analysis with exact solution for a two-minima problem

of the ammonia molecule solving secular equation.

We will analyze the historical development of important works in studying molecular

spectra by means of the quantum theory, and in obtaining information about the structure

of the molecule through an examination of the positions and fine structure of the IR bands.

Then we will present briefly the experiments in observations of vibrational and rotational

transitions in the cases of gas NH3 and the comparison of theoretical and experimental
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amounts of vibrational frequencies.

Different activities of the Fermi group at the Physics Institute in Rome from 1930 to

1932 was devoted to this subject. In this contest is the contribute of Majorana.

2. Theoretical Analysis of Ammonia Spectra.

2.1 A Brief Introduction to the Theory of Vibrations.

The classical theory of vibrations about an equilibrium configuration has developed

from Galileo’s study of small oscillations of a pendulum. In the first half of the eighteenth

century Brook Taylor, D’Alambert, Euler, Daniel Bernoulli investigated the vibrations

of a stretched cord. In 1753 Bernoulli enunciated the principle of the resolution of all

compound types of vibration into independent modes. In 1762− 1765 Lagrange gave the

general theory of the vibrations of a dynamical system with a finite number of degrees

of freedom. One considers a vibrating system defined by its kinetic energy T and its

potential energy V and its position is specified by a set of coordinates (q1, q2, .., qn), giving

the displacements from equilibrium. The problem of vibrations around an equilibrium

configuration is to solve Lagrangian equations of motion in which the kinetic T (a positive

definite form with |aij| 6= 0) and a potential energies V (Taylor expansion in powers of

q1, q2, ..., qn) are homogenous quadratic forms in velocities and coordinates respectively,

with constant coefficients:

T =
1

2

(
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2
1 + ... a22q̇

2
2 + · · ·+ annq̇

2
n + 2a12q̇1q̇2 + 2a13q̇1q̇3 + + 2an−1q̇n−1q̇n

)
(1)
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The equation of motion are:

d

dt

(
∂T

∂q̇r

)
= −∂V

∂qr

(r = 1, 2, · · ·n) (3)

If T and V has the form (1), (2) (following the method of Jordan [18]), it is always

possible to find a

linear transformation of coordinates qi =
∑n

k=1 cikxk such that the kinetic and po-

tential energies, expressed in terms of the new coordinates, called normal (principal)

coordinates, have the form:

T =
1
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(
ẋ2
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n

)
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n

)
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where the constants λ1, · · · , λn, which occur as coefficients of the squares of xk in V , are

the n distinct or multiple roots of the determinant det(aikλ − bik) = 0, and aik, bik are
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the coefficients in the original expressions of T and V energies. The Lagrangian equation

of motion is therefore:

ẍr + λrxr = 0 r = 1, 2, · · · , n. (6)

Thus the classical theory of small oscillations shows that system will vibrate as an ag-

gregation of n independent mode of vibration of the system, provided the corresponding

constant λr is positive (stable equilibrium configuration), with normal or characteris-

tic frequencies νi = λ
1/2
i /2π. Moreover every conceivable vibration of the system may

be regarded as the superposition of n independent normal vibrations according Daniel

Bernoulli’s principle [19]

2.2 Ammonia Molecule Analysis with Theory of Vibrations.

The vibration spectra of polyatomic molecules, in particular of NH3, has been in-

vestigated in great details both theoretically and experimentally. For this system one

has a number s = 4 of atomic nuclei which one assumes to have a possible equilibrium

position. Dealing with the internal or vibrational degrees of freedom, the whole system

has n = 3s− 6 = 6 degrees of freedom. The ammonia molecule is like a one-dimensional

system of a particle moving in a potential field consisting of two equal minima and was

first treated qualitatively by Dennison and Hund [12], [15]. Dennison and Hund assumed

that the behavior of the nuclei in the neighborhood of their equilibrium positions may

be described by means of central forces acting between them in the case of a polyatomic

molecule with certain limitations in regard to the character of the equilibrium of the

system.

The assumption for a molecule of the type XY3 is that in the normal state of the molecule

the X−atom is equidistant from each of the Y−atoms which themselves lie at the cor-

ners of an equilateral triangle. It is further assumed that the X−atom does only four

frequencies, as indeed will any model which posses an axis of symmetry (Hund) and so

X is at the apex of a regular pyramid with an equilateral triangle as a base. Experimen-

tally four fundamental ν are found (without axial symmetry are found six fundamental

frequencies).

Then they assumed that the four independent active frequencies are four fundamental

absorption bands because of their fine structure.

Their study of NH3 was motivated from IR spectroscopy measures and Raman spec-

tra for polyatomic molecules CO2, N2O, NH3, CH4, C2H4 during the period 1905− 1935.

Dennison and Hund, separately, showed, for molecules H2O, NH3, CH4, that the vibra-

tional levels which lie below the potential maximum occur in pairs. To find the normal vi-

brations they used the wave mechanical treatment of vibration spectrum of NH3-molecule

and to obtain their properties they investigated the geometric symmetry of NH3 in its

equilibrium configuration. Let there be chosen a set of coordinates q1, .., q6 giving the

displacements from equilibrium. In considering the system either in classical mechanics

or in wave mechanics, the first step is to find the Hamiltonian. To the approximation

in which the motions of the atoms are small compared with the inter-atomic distances,
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the system may absorb or emit radiation with a series of frequencies. These frequencies

are the so-called normal frequencies and may be computed with the classical theory of

small oscillations (theory of vibrations [16] we have summarized in the above section),

for which in first approximation the kinetic and potential energies assume a simple form:

T =
1

2

(
a11q̇

2
1 + ... + a66q̇

2
6 + 2a12q̇1q̇2 + ....

)
(7)

V =
1

2

(
b11q

2
1 + ... + b66q

2
6 + 2b12q1q2 + ....

)
(8)

where the a′s and b′s are constants.

Then a linear transformation to normal-coordinates:

q1 =
n∑

k=1

cikxk (9)

whereby T and V are diagonal. The λ’s are the n roots, distinct or multiple, of the

determinant:

det(aik − bik) = 0 (10)

The Hamiltonian may be then written:

H = H1 + ... + H6 (11)

where

Hi =
1

2
p2

i +
1

2
λjx

2
i (12)

So one has an aggregation of 6 independent simple harmonic oscillators, i.e., in the

language of wave mechanics, the wave function of the whole system is the product of

the wave function for the individual oscillators and characteristic value is the sum of

the individual eigenvalues. This method is allowed because the system is separable in 6

normal coordinates.

The properties of 6 normal fundamental vibrations frequencies related to λ can be

obtained following the Hund ’s analysis.

In the investigation, the molecule NH3 is assumed to have a certain geometric symme-

try in its equilibrium configuration. In fact in considering the vibration spectrum of a

tetratomic molecule of the general type XY3 (i.e. NH3), the assumption is that in the

normal state of the molecule the X(N)-atom at

equilibrium position is equidistant, i.e., at the center of gravity, from each of Y (H)-

atoms which themselves lie at the corners of an equilateral triangle, not in the same plane

in which X-atom is. So a regular pyramid is the normal configuration of NH3. The ap-

proximation is that the force fields between the X-atoms is strong and those connecting

the X and the Y atoms is weak. In this case the potential function energy is assumed

to have the same symmetry as the geometric configuration of the molecule. Then will

be two frequencies ν1 and ν2 corresponding to the mutual vibrations of the Y3(H3) group

alone which have just the properties of triatomic molecule [17]. In ν1 the Y atoms re-

main at the corners of an equilateral triangle throughout the motion. This oscillation
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is along the symmetry axis so it is called a || vibration. While ν2 is a double frequency

due to an isotropic vibration of N -atom in a plane perpendicular to the symmetry axis,

it is a ⊥ vibration. The remaining normal vibrations of the system may be determined

by considering the motion of the Y3 group, taken as a rigid triangle, relative to the X

atom. The vibration will consist of two sorts, a vibration ν3 in which the triangle and the

point X oscillate with respect to each other, the triangle plane remaining always parallel

to itself. Then ν3 is a single and a || vibration. The last frequencies ν4 is represented

by a typing motion of the triangle relative to the X-point. It is a double ⊥ vibration

frequency. So there are four independent active frequencies, two || and two ⊥. Since the

latter are double, there are six degrees of internal freedom corresponding to the formula

of internal degrees of freedom for four atoms we have seen n = 3s − 6 where s is the

number of atomic nuclei which one assumes to have a possible equilibrium position.

So this qualitative discussion done by Dennison, Hund allowed them to predict the es-

sential features of IR spectrum of the XY3 molecule. There will be four fundamental

absorption bands. The intensity will be different depending upon the force fields, i.e.,

the configuration of the molecule. The fine structure of the band ν1 is similar to the fine

structure of the band ν3 since they both correspond to a vibration along the symmetry-

axis. The pair of bands ν2 and ν4 will have a similar fine structure because ⊥ to the

symmetry axis and will be unlike to the pair ν1 and ν3. Questions with regard to fine

structure arise when one discusses experimental spectra by spectrometer analysis.

2.3 Ammonia Molecule Analysis with Theory of Groups

The ammonia infrared spectrum is an example of the application of group theory [11]

to physics. Molecules absorb and emit electromagnetic radiation in wide areas of the

spectrum. If electrons change state, the radiation may be in the visible region. Molec-

ular ultraviolet spectra are rather rare, since molecules fall apart at these high energies.

Changes in vibrational states are associated with infrared wavelengths, and changes in

rotational states with the far infrared. There are even finer energy differences that cause

spectra even in the radio-frequency region. All of these generally consist of a great number

of lines, sometimes not resolved individually, forming bands and such.

Infrared spectra are a valuable tool for determining the structure of molecules. An

infrared band is simpler than the band spectra in the visible, but still rather complex, con-

sisting of several series of lines corresponding to transitions between different rotational

states. Two methods are generally used, absorption spectra that study the transitions

from the ground state to excited states, and Raman spectra that studies the changes in

wavelength in scattered radiation. Raman spectroscopy can be done in the visible region

with its more convenient experimental conditions, and with the powerful beams of lasers.

Quantum mechanics is necessary for the understanding of molecular spectra, which

it perfectly explains. Then there is a relation of group theory to quantum mechanics.

Symmetry is a powerful tool in the quantum mechanics of molecules, and the ammonia

molecule furnishes a good example. One can consider what infrared and Raman spectra
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are to be expected if the molecule is a symmetrical pyramid, which is indeed the case

using the character analysis. The symmetrical pyramid has the symmetry group C3v,

whit its character table1:

C3v E 2C 3σ basisfunctions

A1 1 1 1 Tz, x
2 + y2, z2

A2 1 -1 1 Rz

E 2 -1 0 (Tx, Ty)(Rx, Ry)(x
2 − y2, xy)(xz, yz)

T and R are the representations to which components of the translation and rotation

displacements belong; these are vectors and axial vectors, respectively. T also shows the

representations of the dipole moment operator which produces the infrared spectrum.

Then there are the quadratic functions which transform like the molecular polarizability,

the operator which produces the Raman spectrum.

We assign three displacement coordinates to each atom, 12 in all for the four atoms.

The first thing to do is to find the characters of this representation. The character for E

is 12, since the identity transforms each coordinate into itself. The rotations about the

axis leave only the displacements on the nitrogen in the same place, and the character is

the same as that of the three T components, or 1 - 1 = 0. Reflections in a vertical plane

leave the nitrogen and one hydrogen unmoved, and the character is easily seen to be 2

- 1 = 1 for each atom. Therefore, the characters of the reducible representation of the

displacements is 12, 0, 2. This must include the representations of the translation and

rotation of the molecule as a whole, A1 +A2 +2E. Therefore, we subtract the characters

6, 0, 0 to find the character of the vibrations, 6, 0, 2. By character analysis, we find that

this gives 2A1 + 2E. Ammonia, therefore, should exhibit four fundamentals, all active in

both infrared and Raman spectra. This is exactly what is observed. The Raman spectra

of the E fundamentals ought to be faint, and they were not observed (or were not until

lasers came in). If the ammonia molecule were planar, two more fundamentals would be

expected, and they are not observed. Herzfeld gives the four modes as follows. There

is a very strong band at 1627.5cm−1 (infrared spectroscopists use the reciprocal of the

wavelength, since it is proportional to the frequency and the quantum energy), about

6.1µ, and is a so-called perpendicular band, which would be expected from the x and y

1 This table defines the abstract group Ci, which has many representations, or concrete realizations. Let
the symbol σ stands for the transformation x = -x. C is either of the rotations. In three dimensions, this
would be a reflection in the yz-plane. We can use σ as an operator: σf(x) = f(−x), E is the identity
operator, such that Ef(x) = f(x) for any f(x).One calls the elements E and Ai, that all obey the same
multiplication table.
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components of the dipole moment. This is one of the doubly-degenerate E fundamentals,

a symmetric bending of two of the hydrogens to or away from each other. The asymmetric

bending is of higher frequency, 3414cm−1, and difficult to observe. These are the two E

modes. There is a strong parallel band at 931.58cm−1 and 968.08cm−1, about 10.6µ

corresponding to an A1 representation. This band is double, and the reason is curious.

The ammonia molecule can turn itself inside-out; that is, the nitrogen can pass through

the plane of the hydrogens. This isn’t easy, but the nitrogen can tunnel through, and

the doubling is the result. The states divide into those symmetrical with respect to this

inversion, and those that are antisymmetrical (change sign). The selection rules on the

rotational transitions make the band separations the sum of the inversion splitting in

the two cases. In the Raman spectrum, the separation is the difference of the splitting.

The Raman bands are observed at 934.0cm−1 and 964.3cm−1. Finally, there is a strong

band at 3335.9cm−1and 3337.5cm−1, and a Raman shift at 3334.2cm−1 (about 3.0µ)

corresponding to the other A1 fundamental. In this mode, the bond lengths lengthen

and shorten symmetrically. The two A modes can be called bending and stretching,

respectively.

ND3, with the heavier deuterium substituted for the protons, gives somewhat dif-

ferent (lower) frequencies, and the shifts can be used to nail down the identification of

the vibrational frequencies, confirming the conclusion that ammonia is a symmetrical

pyramid. The inversion doubling is a very interesting phenomenon. It turns out to be

possible to separate molecules in even and odd inversion states, and this led to the am-

monia maser, the first of its kind. Although one can form a good picture of ammonia as

if it were a macroscopic object, try to picture it with the nitrogen partly on both sides

of the hydrogens!

Using the group theory F. Hund (1925) [12] studies the equilibrium of the molecule of

ammonia, and he shows that, if the electronic configuration around the nitrogen, origi-

nally central, is capable of a polarization induced by the hydrogen nuclei, the molecule in

the normal state have just the axial symmetrical form. So he assumed that the molecule

NH3 has a regular pyramid equilibrium configuration. The nitrogen atom at equilib-

rium position is equidistant, i.e. at the center of gravity, from each of hydrogen atoms,

which lie at the corners of an equilateral triangle, not in the same plane of N−atom.

In considering the vibrations of such a molecule he erroneously states that there exist

only three active characteristic frequencies, whereas, unless the particles all lie in the

same plane, there must in general exist four, as shown by Dennison [15]. Hund gives a

table of harmonic and combinations bands of NH3 with three fundamental frequencies

ν1 = 970cm−1, ν2 = 1700cm−1, ν3 = 4500cm−1, that may be changed by allowing the

band at λ = 97µ i.e. ν ∼ 3300cm−1 to become the fourth fundamental band.

2.4 Approximate Analysis of NH3 with WKB Method.

Dennison and Uhlenbeck [20] compute the level separation of NH3, using the Wentzel-

Kramers-Brillouin (WKB) method of approximation for a one-dimensional system of a
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particle moving in a potential field, consisting of two equal minima. Then they make

an application of the results to the ammonia molecule to determine its form. The WKB

method yields an approximate solution of the wave equation whose form depends upon

whether the region considered lies within or without the region of classical motion, that is,

the region where the kinetic energy is positive. In the first case the solution is oscillatory,

in the second or non-classical region the solution consists of a linear combination of an

increasing and a decreasing exponential. At each boundary or critical point are valid the

so-called Kramers connection formulae [21]. These formulae furnish a method by which

one may approximate to any solution of the wave equation.

They show that the infrared spectrum of the ammonia molecule exhibits features which

may be directly related to the one dimensional problem of two equal minima. The parallel

type vibration bands for example are observed to be composed of two nearly superimposed

bands, depending upon the fact that there are two equivalent positions of equilibrium for

the nitrogen nucleus. Symmetrical molecules of the NH3 type which are not coplanar

exhibit that all vibrational levels ar double, depending upon the fact that there are

two exactly equivalent positions of equilibrium for N atom, one above the plane of the

H atoms, and the other at an equal distance below. A quantum mechanical treatment

reveals that it causes the vibrational level become double. The doublet separation is small

compared with the spacing of vibrational levels (inversion problem related to rotational

spectrum).

The physical origin and theoretical description of this doubling is presented, followed

by a description of the experimental measurement. The inversion doubling of about 35

cm-1 represents an excellent coupling of a simple infrared measurement with a quantum

mechanical description involving many aspects of the wave nature of vibrations. The

normal modes of Ammonia are ν2 = 950cm−1,(symmetric bend), ν4a = 1627cm−1 (asym-

metric bend), ν4b = 1627cm−1 (asymmetric bend), ν1 = 3336cm−1 (symmetric stretch),

ν3a = 3414cm−1 (asymmetric stretch), ν3b = 3414cm−1 (asymmetric stretch); ν3a, ν3b are

degenerate modes, as are ν4a, ν4b. All six normal modes are IR active.

2.5 Exact Analysis of NH3.

Rosen and Morse [22] give an analysis of the vibration of the nitrogen in the ammonia

molecule using an exact solution of the wave equation for a form of one-dimensional po-

tential energy. The potential energy for this molecule has two minima at distance 2xm

apart, separated by a ”hill” of height H.

They describe another solution, for a form of potential field different from that of Den-

nison [17] and they give an example of its application to the vibrational states of NH3.

Due to the symmetry of the molecule there are two equivalent positions of equilibrium

for the nitrogen, at equal distances above and below the plane of the three hydrogens.

This equivalence of the two minima makes every vibrational level a doublet, a result

which is found experimentally. To analyze the vibrational behavior one separates off the

coordinates of the center of the gravity of the molecule and the Euler angles fixing its
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orientation in space, and deal only with the coordinates fixing the relative positions of

the atoms.

One of these coordinates is x, the distance of the nitrogen (N) atom from the plane of

the hydrogen. The other five coordinates z1, z2, z3, z4, z5, can be chosen that the positions

of the two equilibrium configurations are at z1 = z2 = z3 = z4 = z5 = 0, x = ±xm. The

potential function V (x, z1, z2, z3, z4, z5) therefore has its two minima at these two points.

They justify the use of x as a ”normal” coordinate (i.e. splitting from the general six-

dimensional problem to a one-dimensional problem in x alone) by the following method.

From considerations of symmetry all the wave functions are symmetric or antisymmetric

about the nodal hypersurface x = 0. They give a two minima potential field V (x) which

is amenable of exact solution. For each level of the one minimum problem there is a pair

of levels for the double minimum case. The separation between the levels in a pair is

small compared to the energy difference between different pairs as long as the levels are

below the top of the intermediate hill.

Salant and Rosenthal in 1932 [23] derive expressions for the effects of isotopy on the

normal frequencies, following Dennison’s [17] general, noncentral force treatment of the

normal modes of vibration of symmetrical triatomic and tetratomic molecules.

Sanderson and Silverman in 1933 [24], following the procedure of Dennison [17], calculate

the positions of the fundamental vibrations of molecule ND3.

Rosenthal [25] summarizes briefly the general procedure for obtaining the normal vibra-

tion frequencies of a molecule of any type of symmetry, without the use of group theory.

He writes the expression for the kinetic energy T in terms of the displacements of the var-

ious atoms from their equilibrium positions. The potential energy, V , is written in terms

of the mutual displacements of the atoms as the most general quadratic form consistent

with geometrical symmetry. As the next step, linear combinations of the original displace-

ments are introduced and both T and V are transformed to them. The normal vibration

frequencies, ω, or rather λ = 4π2ω2 are then obtained as the roots of |λT − V | = 0. For

n degrees of internal freedom, the expansion of this nth order determinant will give rise

to an equation in λ of the nth degree. He gives a discussion of the vibration frequencies

and isotopic shifts of tetratomic molecules, with a discussion of various intramolecular

forces and the physical meaning of the results, for pyramidal and coplanar molecules.

Manning [26] chooses an expression for the potential energy of NH3(ND3) which has

the correct general characteristics of geometry symmetry of NH3 and which permits an

exact solution of the Schrodinger equation. Making substitutions they obtain the indicial

equation from Schrodinger equation and make quantitative calculations of the behavior

of the energy levels, those below the top of the center of the hill of V are double according

data (Wright, Randall [27]).

3. On the Oscillations Bands of Ammonia by Majorana

Majorana studied the NH3 spectra [28] and obtained results in agree with the exper-

imental results, i.e., two simple vibrations and two double vibrations. He considered the
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symmetry of the NH3. The three atoms H occupy the vertices of equilateral triangle; the

atom N is on the axes out of the plane. The independent displacements which contribute

to elastic forces are six and they obtain from the twelve displacements of the four atoms

with the condition that the resultant of applied vectors δPi at the rest points P ′
i is zero.

He defines the displacements q1 = 1, q2 = q3 = . . . = q6 = 0 as those in which the

atom H1 moves in direction NH1 of MN/(MN + MH) and the atom N in the opposite

direction of length MH/(MN + MH). Similarly one defines the displacements qi = δi2 e

qi = δi3. Then we define as displacement qi = δi4 that in which the atom H3 shifts of

1/2 in the direction H2H3 and the atom H2 of 1/2 in the opposite direction; for circular

permutation he puts the displacements qi = δi5 e qi = δi6.

Indicating α the angle (in the equilibrium position) N̂H1H2 and with β the angle

Ĥ1NH2 the kinetic energy is:

T =
1

2

[
M2

HMN

(MN + MH)2

(
q̇2
1 + q̇2

2 + q̇2
3 + 2q̇1q̇2 cos β + 2q̇2q̇3 cos β

+ 2q̇3q̇1 cos β) +
M2

NMH

(MN + MH)2

(
q̇2
1 + q̇2

2 + q̇2
3

)

+
MNMH

MN + MH

cos α (q̇1q̇5 + q̇1q̇6 + q̇2q̇6 + q̇2q̇4 + q̇3q̇4 + q̇3q̇5)

+
1

2
MH

(
q̇4 + q̇5 + q̇6 +

1

2
q̇4q̇5 +

1

2
q̇5q̇6 +

1

2
q̇6q̇4

)]
. (13)

then he defines the potential energy

V =
1

2

∑

ik

aik q1qk (14)

and he performs a canonical transformation [28]. He obtains a new expression of the

kinetic energy in the new coordinates Qi, similarly for the potential. He obtains then two

simple vibrations relative to coordinates Q1 and Q2 and two double vibrations relative

to coordinates Q3 and Q4 with the square of angular velocity:

λ = 4π2 ν2 (15)

4. Brief Experimental Investigation until 1932

Now we will give a brief chronology of the experiments on NH3.

Fox studies (1928) the IR region of the spectrum of NH3 using the Prism spectrometer

[29]. Sir Robert Robertson and J.J. Fox in 1928 used a small infra red prism spectrom-

eter, filled of ammonia gas. They took a source of energy constant, for calibrating the

mechanism for reading wave lengths.

At ∆V = (100 ± 200)V and T ∼ 18C they used Nernst filaments as source of Radia-

tion, since those gave the most uniform supply having regard to the intensity at different

regions of the spectrum. There are source radiation - tubes observation - spectrometer.

As the full radiation contains light of short wave length, it may affect chemically the gas



236 Electronic Journal of Theoretical Physics 3, No. 10 (2006) 225–238

NH3 under observation. The results is a measure of position of bands of NH3 and their

intensity. He made a preparation of Ammonia generated in the little flask A by warming

a mixture of damp solid ammonia and 50% KOH solution was allowed to escape at the

two-way top x, until samples were completely absorbed by water.

He confirmed that the view that the NH3 is a tetrahedron was acceptable.

Rasetti [30] et al. have photographed the Raman spectra in 1929 of gaseous CO2, NO2, NH3,

CH4, C2H4 using the line λ = 2536 of mercury as the exciting radiation. They have ob-

served vibrational transitions in all the gases, and rotational transitions in the NH3 and

CH4.

Berker in 1929 [31] analyzes the NH3 absorption band extending at 3.0µ and 1.9µ and

from 8µ to 24µ interpreting the double character of the 10µ band to be a consequence of

the close proximity of the two equilibrium positions for the N atom, one of either side of

the plane formed by the H atoms.

Dennison and Hardy in 1932 [2] make an experimental search for the doubling of the

3.0µ band using an IR spectrometer of high resolving power. The experimental results

furnishes a strong argument for the theory of the doubling of the ammonia bands. They

discuss the form of ammonia molecule with the theory . And then they prove that those

states of ammonia existing in nature have vibration-rotation-nuclear spin wave functions

which are antisymmetrical for an interchange of two of the hydrogen atoms.

5. Conclusions

In this paper we have depicted the genesis and the first developments of the study

of spectra of NH3 analyzed for the first time by Coblentz. Far from being complete,

our account has focused on the results achieved from 1905 to 1932, as given evidence by

many articles published in widespread journals. We have also pointed out the practically

unknown contribution to spectral analysis Majorana, who was introduced to the subject

by studies and experiments in Rome. The result reached by Majorana as early as in

the beginning of 1930 is to find the right number of fundamental frequencies of spec-

trum of NH3. Wide room has been made to different approaches to study the spectrum

qualitatively and quantitatively and experimentally too. A theoretical analysis of ammo-

nia spectra has been reported in Sect. 2, with a brief account of Theory of Vibrations

and Theory of Groups. In the same sections we have showed an approximate analysis

of NH3 with WKB method and an exact analysis with a particular form of potential.

Particular attention has been given to the approach of Majorana for the analysis of IR

spectra of NH3 in Sect. 3. Early experiments of ammonia, essentially dealt with atomic

spectroscopy, have been discussed above in Sect.4. From what discussed here, it is then

evident the interest to study the ammonia spectra by Majorana and its contribute to find

the exact solution.
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