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1. Introduction

It is a great pleasure to dedicate this article to the 100’th anniversary of the birth

of Ettore Majorana. As a testimony to his lasting influence on science, we shall describe

how one of his great insights, used in a modern context, can be related to a particular

macroscopic quantum phenomenon.

The idea is related to the observation by Majorana that a relativistic fermion such

as the electron can be meaningfully decomposed into more basic degrees of freedom,

essentially by taking the real and imaginary parts of its wave-function [1]. In relativistic

field theory, what one obtains are called Majorana fermions, which have become the

basic building blocks of supersymmetric field theories and supply a scenario whereby the
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neutrinos which are observed in nature can have mass. We shall use this idea in a different

context. In quantum condensed matter, the appearance of an emergent Majorana fermion

would provide an excitation of a system that has minimal degrees of freedom. The wave-

function of the single-particle state would obey a Majorana condition, which would forbid

quantum fluctuations of its phase. The utility of this fact has already been recognized in

the context of quantum computing [2]-[4]. In the present manuscript, we will elaborate on

our previous observation [5] that in some cases this can provide isolated states with wave-

functions which are peaked at multiple, well separated locations. In a controlled setting,

this can be used to create a condensed matter realization of the Einstein-Podolsky-Rosen

effect and even a version of teleportation by long-ranged tunnelling.

Majorana’s original motivation for inventing the Majorana fermion was to avoid the

negative energy states that relativistic particles invariably seem to possess by identifying

the negative and positive energy states of a relativistic wave equation as manifestations

of the same quantum excitation.

In second quantization, the positive energy state can be occupied by a particle. Filling

a positive energy state creates an excited state of the system with positive energy. On

the other hand, a negative energy state should be regarded as typically being already

filled by a particle. An excitation of the system is then found by emptying the negative

energy state, or creating a hole. The system is put in a higher energy state by removing

a negative energy particle, equivalently, creating a positive energy hole.

Majorana’s idea can be implemented when there is a particle-hole symmetry. Then,

for a given particle state, there exists a hole state with the same energy and with a

wave-function that is related to the particle wave-function by a simple transformation.

Then, by making the appropriate identification, one could indeed identify these as one

and the same quantum state. Of course, the resulting system has half as many degrees

of freedom.1

To illustrate the idea, let us recall the conventional second quantization of complex

fermions, which could be either relativistic or non-relativistic. We begin with the as-

sumption that in some approximation it makes sense to discuss a single non-interacting

particle whose wave-function obeys the Schrödinger equation

i~
∂

∂t
Ψ(~x, t) = H0Ψ(~x, t) (1)

where H0 is the single-particle Hamiltonian operator. Generally, as in the case of the

Dirac equation, the Hamiltonian H0 could be a matrix, as well as a differential operator,

and Ψ(~x, t) a column vector whose indices we shall suppress.2 The second-quantized field

1 For a comprehensive account of issues to do with positive and negative energy modes of relativistic
bosons and fermions, see the series of papers [6]-[11].
2 An example is the Dirac Hamiltonian in 3+1-dimensions

H0 = i~α · ~∇+ βm

where ~α and β are a set of four Hermitian, anti-commuting 4× 4 Dirac matrices. There exists a matrix
Γ with the property Γ~α Γ = ~α∗ and ΓβΓ = −β∗, so that, ΓH0Γ = −H∗

0 and Γψ∗E = ψ−E . This is a
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operator also typically obeys this wave equation plus the equal-time anti-commutation

relation {
Ψ(~x, t), Ψ†(~y, t)

}
= δ(~x− ~y) (2)

It is this anti-commutator which defines Ψ(x, t) as an operator. It can further be used to

derive the wave equation (1) from the second quantized Hamiltonian,

H =

∫
dx : Ψ†(x, t)H0Ψ(x, t) : (3)

using the Hamilton equation of motion

i~
∂

∂t
Ψ(x, t) = [Ψ(x, t), H]

We shall assume that H0 is a Hermitian operator which has eigenfunctions and a

spectrum of real eigenvalues

H0ψE(x) = EψE(x)

The energy E can be both positive and negative, in fact for the relativistic electron, if (1)

were the Dirac equation, there are necessarily negative eigenvalues and the spectrum is

unbounded below. The eigenfunctions obey the orthogonality and completeness relations

∫
d~xψ†E(~x)ψE′(~x) = δEE′ ,

∑
E

ψE(~x)ψ†E(~y) = δ(~x− ~y) (4)

The delta function and summation in these formulae should be understood in a gener-

alized sense where they are a Kronecker delta and a sum for discrete components of the

spectrum and a Dirac delta function and integral for continuum spectrum.

In this system, one then forms the second quantized field operator by superposing the

wave-functions with creation and annihilation operators,

Ψ(x, t) =
∑
E>0

ψE(x)e−iEt/~aE +
∑
E<0

ψE(x)e−iEt/~b†−E

Here, aE is the annihilation operator for a particle with energy E and b†−E is the creation

operator for a hole with energy −E. When they obey the algebra with non-vanishing

anti-commutators {
aE, a†E′

}
= δEE′ ,

{
b−E, b†−E′

}
= δEE′

the Ψ(~x, t) obeys the anticommutator (2). The completeness condition in Eq. (4) is

essential for establishing this.

one-to-one mapping of positive to negative energy states. Explicitly, if the matrices are represented by

~α =




~σ 0

0 −~σ


 with ~σ the Pauli matrices and β =




0 1

1 0


, then we can form the matrix Γ =




0 −iσ2

iσ2 0


.

Note that, in this case Γ = Γ∗ and Γ2 = 1. A Majorana fermion obeys the reality condition Ψ(~x, t) =
ΓΨ∗(~x, t).
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The ground state of the system, |0 >, is the state where all positive energy levels are

empty and where all negative energy levels are filled, or alternatively all hole states are

empty. In the second quantized language, it is annihilated by the annihilation operators,

aE|0 >= 0 = b−E|0 >

Excited states are created by operating on |0 > with a†E and b†−E. The excitations created

by a†E are particles, those created by b†−E are anti-particles, or holes. A typical state is

a†E1
. . . a†Em

b†E1
. . . b†En

|0 >

and such states form a basis for the Fock space of the second quantized theory.

One can formulate Majorana fermions for a system of this kind if there exists a

particle-hole symmetry, or, in the relativistic context, a charge conjugation symmetry.

For example, consider the situation where a matrix Γ exists such that, for eigenstates of

H0,

ψ−E(x) = Γψ∗E(x) (5)

(This implies that Γ∗Γ = 1 = ΓΓ∗.) Then, the particles and holes have identical spectra.

A Majorana fermion is formed by treating the particle and hole with the same energy as

a single excitation. The second quantized field operator is

Φ(x, t) =
∑
E>0

(
ψE(x)e−iEt/~aE + Γψ∗E(x)eiEt/~a†E

)

This fermion does not have both particles and anti-particles. The ground state |0 > is

annihilated by aE

aE|0 >= 0 ∀aE

and a†E creates particles, so that the excited states of the system are

a†E1
a†E2

...a†Ek
|0 >

The field operator is (pseudo-)real in the sense that it obeys

Φ(x, t) = ΓΦ∗(x, t) (6)

It obeys the anti-commutation relation

{
Φ(~x, t), Φ†(~y, t)

}
= δ(~x− ~y) (7)

To be concrete, in a system of complex fermions where the Hamiltonian such that the

spectrum has the particle-hole symmetry (5), we could decompose the complex fermion

into two Majorana fermions by taking the real and imaginary parts,

Φ1(x, t) =
1√
2

(Ψ(x, t) + ΓΨ∗(x, t))
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Φ2(x, t) =
1√
2i

(Ψ(x, t)− ΓΨ∗(x, t))

Then each of Φ1(x, t) and Φ2(x, t) are a Majorana fermion.

In spite of the beautiful simplicity of this idea, Majorana fermions are not easy to come

by in nature. One could, for example, decompose the relativistic electron, whose wave

equation does have a charge-conjugation symmetry, into its real and imaginary parts.

However, the interaction of the electron with photons is not diagonal in this decomposi-

tion. The real and imaginary components would be rapidly re-mixed by electromagnetic

interactions, they cannot be stationary states of the full Hamiltonian of quantum elec-

trodynamics.

One place where we might have better luck is to look for emergent Majorana fermions

in quantum condensed matter systems. For example, in a superconductor, the electro-

magnetic interactions are effectively screened. Indeed, the Bogoliubov quasi-electrons in

a superconductor behave like neutral particles. However, even there, in an ordinary s-

wave superconductor, the anti-particle of a quasi-electron is another quasi-electron with

opposite spin. Indeed, the quasi-electron operator in an s-wave superconductor is the

two-component object 


ψ↑(x)

ψ∗↓(x)




where (↑, ↓) denotes spin up and down. It obeys the charge conjugation condition



0 1

1 0







ψ↑(x)

ψ∗↓(x)




∗

=




ψ↓(x)

ψ∗↑(x)




which is not an analog of the Majorana condition in eqn. (6), since it entails both conju-

gation and a flip of the spin.

In order to find a medium where the quasi-electron is a Majorana fermion, we need

to consider a superconductor where the condensate has Cooper pairs with the same spin,

so that the quasi-electron has the form



ψ↑(x)

ψ∗↑(x)




Then, quasi-electron is pseudo-real, complex conjugation of its wave-function is equivalent

to multiplying by the matrix Γ =




0 1

1 0


,




0 1

1 0







ψ↑(x)

ψ∗↓(x)




∗

=




ψ↑(x)

ψ∗↑(x)



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This gives a physical realization of a Majorana fermion. An example of such a super-

conductor is one with a p-wave condensate, such as Strontium Ruthenate [12]. There,

the condensate has the form 〈ψ↑(x)~x× ~∇ψ↑(x)〉 (and can in principle have an admixture

of spin down as well). Thus, we see that, in such a material, the quasi-electron is a

two-component object obeying a Majorana condition. We will make use of this example

later in this Paper.

Our particular interest in the following will be in situations where the fermion spec-

trum has mid-gap, or zero energy states. These are well known to lead to interesting

phenomena. Already for complex electrons, mid-gap states give rise to fractional quan-

tum numbers [13, 14]. With Majorana fermions, they are known to lead to peculiar rep-

resentations of the anti-commutator algebra which can violate basic symmetries [15, 16].

Some interesting effects in the context of zero modes on cosmic strings have also been

examined [17]-[20].

To illustrate, let us consider the second quantization of a complex fermion whose

spectrum has a zero mode,

H0ψ0(x) = 0

The conjugation symmetry implies that

ψ0(x) = Γψ∗0(x)

If the fermion is complex (not Majorana), the second quantized field has a term with

the zero mode wave-function and an operator, the first term in the following expansion:

Ψ(x, t) = ψ0(x)α +
∑
E>0

ψE(x)e−iEt/~aE +
∑
E<0

ψE(x)e−iEt/~b†−E .

Here, α obeys the algebra {
α, α†

}
= 1 (8)

and it anti-commutes with all of the other creation and annihilation operators. The

existence of this zero mode leads to a degeneracy of the fermion spectrum. The vacuum

state is annihilated by all of the annihilation operators aE and bE. However, it must also

carry a representation of the algebra (8). The minimal representation is two-dimensional.

There are two vacuum states, (| ↑>, | ↓>), which obey

aE| ↑>= 0 = aE| ↓> , bE| ↑>= 0 = bE| ↓>

and

α†| ↓>= | ↑> , α†| ↑>= 0

α| ↓>= 0 , α| ↑>= | ↓>
The entire spectrum has a 2-fold degeneracy, with two towers of excited states,

a†E1
...a†Em

b†E1
...b†En

| ↑>
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and

a†E1
...a†Em

b†E1
...b†En

| ↓>
having the identical energies

∑
i Ei.

This quantization of the zero mode α was argued by Jackiw and Rebbi [13] to lead

to states with fractional fermion number. Indeed, the suitably normal ordered second

quantized number operator

Q =

∫
d~x

1

2

[
ψ†(x, t), ψ(~x, t)

]
=

∑
E>0

(
a†EaE − b†−Eb−E

)
+ α†α− 1

2
(9)

has fractional eigenvalues, for example

Q| ↑>= +
1

2
| ↑> , Q| ↓>= −1

2
| ↓>

In actuality, the charge operator is defined only up to an overall additive constant. How-

ever, there does exist a symmetry of the theory, gotten at the second quantized level

by replacing Ψ(x, t) by ΓΨ∗(x, t). This transformation interchanges particles and anti-

particles, and is a symmetry of the suitably normal ordered second quantized Hamilto-

nian. It should also flip the sign of Q. It implies that, if there is an eigenstate of Q in

the system with eigenvalue q,

Q|q >= q|q >

then there must exist another eigenstate | − q > in the spectrum of Q with eigenvalue

−q:

Q| − q >= −q| − q >

In addition, it is easy to argue that the eigenvalues of Q are space by integers, i.e. if

q1 and q2 are any two eigenvalues, then q1 − q2 =integer. This is essentially because the

raising and lowering operators for Q are Ψ† and Ψ, respectively and they raise and lower

in units of integers. In particular, this implies that

q − (−q) = 2q = integer

Thus, the only possibilities are that the entire spectrum of states have integer eigen-

values of Q, q =integer, or the entire spectrum of states have half-odd-integer eigenvalues

q = 1
2
-odd integer. It is easy to see that the operator Q as written in (9) indeed flips

sign if we interchange aE ↔ bE and α ↔ α† and the offset of -1/2 that appears explicitly

there is essential for this transformation to work. This leads to the conclusion that, with

a single fermion zero mode, the fermion number charge is quantized in half-odd-integer

units.

Now, consider what happens for a Majorana fermion with a single zero mode. 3 In

this case, a charge analogous to Q is not defined, so the issue of fractional charge is not

3 We will later construct an explicit example where this precisely this situation occurs.
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relevant. But the quantization of the system is still interesting. The second quantized

operator is

Φ(x, t) = ψ0(x)α +
∑
E>0

ψE(x)e−iEt/~aE +
∑
E<0

ψE(x)e−iEt/~a†−E

This fermion contains half of the degrees of freedom of the previous complex one. Here,

the bE are absent and the zero mode operator is real, α = α†.
The creation and annihilation operator algebra is now

{
aE, a†E′

}
= δEE′

as before, and

α2 = 1/2 , {α, aE} = 0 =
{

α, a†E
}

(10)

A minimal representation can be constructed by defining a vacuum state where

aE|0 >= 0 for all E > 0

Then, we can represent the zero mode by the operator

α =
1√
2
(−1)

P
E>0 a†EaE (11)

Indeed

α = α†

and, since ∑
E

a†EaE|0 >= 0

we have

α|0 >=
1√
2
|0 >

The Klein operator, (−1)
P

E>0 a†EaE , anti-commutes with aE and a†E. A basis for the

Hilbert space consists of the vacuum and excited states which are obtained from the

vacuum by operating creation operators

a†E1
a†E2

...a†Ek
|0 >

These are eigenstates of
∑

E>0 a†EaE with integer eigenvalues. Thus, in this basis, α2 =

1/2 when operating on each basis vector, and thus the identity operator on the whole

space. The operator in (11) thus satisfies the algebra (10).

Another, inequivalent representation can be obtained by starting with

α̃ = − 1√
2
(−1)

P
E>0 a†EaE (12)

and a similar construction leads to a Hilbert space whose states are orthogonal the one

found above. We emphasize here that there are two inequivalent representations of the
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anti-commutator algebra, one where the zero mode operator is represented by α in eq. (11)

and one where it is represented by α̃ in eq. (12). Both of these give an irreducible

representation and the two representations are not related to each other by an internal

automorphism.

We observe that these minimal representations of the anti-commutator algebra have

the property that they break a symmetry of the fermion theory under Φ(~x, t) → −Φ(~x, t),

which we shall call “fermion parity”. Fermion parity is a symmetry of the linear wave

equation even when Φ(~x, t) is a Majorana fermion. At the quantum level, fermion parity

symmetry leads to a conservation law for the number of fermions modulo 2. By this con-

servation law, any physical process must entail creation or destruction of an even number

of fermions. For example, if a quantum state is initially prepared with an even number

of fermions, after any physical process, the number should remain even. In operator

language, there should exist an operator (−1)F which anti-commutes with Φ(~x, t),

(−1)F Φ(~x, t) + Φ(~x, t)(−1)F = 0

and which therefore commutes with the full second quantized Hamiltonian,

(−1)F H = H(−1)F

where

H =

∫
d~x

1

2
: Φ†(~x, t)H0Φ(~x, t) :

However, we see that in the minimal representations of the anti-commutation algebras

(10) discussed above, in the first representation (11),

< 0|Φ(x, t)|0 >= +
1√
2
ψ0(x)

and in the second representation (12)

< 0|Φ(x, t)|0 >= − 1√
2
ψ0(x)

In both of these representations, neither the vacuum state, nor any of the excited states

can be eigenstates of fermion parity, the operator (−1)F . Thus fermion parity symmetry

is broken by the minimal quantization of this model.

Fermion parity is a sacred symmetry of physics in four dimensional space-time [21].

All fundamental fermions in nature have half-odd-integer spin. A flip in sign of all fermion

operators can then be realized as a rotation by an angle 2π. Nature should be symmetric

under a rotation by 2π. This means that, if we superpose a state with even fermion

number and a state with odd fermion number,

c1|even > +c2|odd >

no experiment should be devisable, even in principle, to measure the relative sign of c1

and c2. In the four dimensional world, unless rotation invariance is broken at a the level
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of fundamental physics, we should always be free to insist that (−1)F is a good symmetry

and that we can take all physical states as eigenstates. Of course, this applies in four

space-time dimensions. The emergent Majorana fermions that we want to consider here

are embedded in four space-time dimensions. We therefore feel free to insist on fermion

parity.

This brings up a contradiction with the previous discussion, where we found that

fermion parity is necessarily broken by the quantization of the zero mode Majorana

fermion system. The only way to restore the symmetry is to use a reducible represen-

tation of the anti-commutator algebra. The minimal modification of the representation

is equivalent to the introduction of another degree of freedom – and subsequent use of

irreducible representations. The new degree of freedom acts like a hidden variable. In

the anti-commutator algebra it would be another anti-commuting variable β which has

identical properties to α,

β2 = 1/2

and anti-commutes with all other variables. Then the algebra of α and β would have a two

dimensional representation which we could find by considering the fermionic oscillators

a =
1√
2

(α + iβ) , a† =
1√
2

(α− iβ) (13)

α =
1√
2

(
a + a†

)
, β =

1√
2i

(
a− a†

)
(14)

which obey

a2 = 0 , a†2 = 0 ,
{
a, a†

}
= 1

We could then find a vacuum state which is annihilated by a, and another state which is

created from the vacuum by a†,

a|− >= 0 , a†|− >= |+ >

a|+ >= |− > , a†|+ >= 0

so that both are eigenstates of (−1)F and fermion parity is restored. Later we will see

that the hidden variable β can have a physical interpretation.

2. Degeneracy, Tunnelling and Teleportation

In this paper, the most speculative use of Majorana fermions that we shall find is

for a kind of teleportation by quantum tunnelling. In the context in which quantum

tunnelling is normally studied, a classical object can exist in allowed regions. There exist

other forbidden regions where it is not allowed to be. Then, quantum tunnelling makes

use of the fact that, when the particle is quantum mechanical, its wave-function does not

necessarily go to zero in a classically forbidden region, but decays exponentially. That

means that it could, in principle, have support on the other side of such a region and
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there is some small probability that an object will be found on the other side. This is

called tunnelling.

One might try to make use of quantum tunnelling to transport an object through a

classically forbidden region. Unfortunately, the exponential decay of the wave-function

across any classical barrier of appreciable size renders it too small to be of any practical

use in this regard. A more sophisticated approach would be to create a scenario where

the wave-function has peaks of appreciable size at spatially separated locations, perhaps

with a forbidden region in between. This too will fail, but for a more sophisticated reason

which, since it is related to our later use of Majorana fermions, we will outline. Consider,

for example the double well potential depicted in Fig. 1. If the locations of the minima

21

Fig. 1 A double-well potential.

are well separated and the barrier in between them is large, semi-classical reasoning can

be applied to this system. Then, the ground state of a particle in this potential should

indeed have a peak near each of the minima, and should be approximately symmetric

under interchanging the locations of the minima. The typical profile of such a wave-

function is drawn in Fig. 2.

(x)ψ
2

ψ
1
(x)

21 x

Fig. 2 The ground state of a particle in a double well has two peaks, localized at 1 and 2.

Now, we ask the question. Is this state of use for tunnelling? If this were the energy

landscape in which a quantum mechanical particle lived, could we, for example, popu-

late this ground state by interacting with the system in the vicinity of minimum 1 and

then depopulate the state by interacting with the system near the other minimum - 2,

effectively teleporting the particle from location 1 to location 2?
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The answer to this question is ‘no’. The reason for this answer is degeneracy, or

approximate degeneracy of the quantum state that we are considering. In such a system,

when our classical reasoning is good, there must always be a second state, perhaps at

slightly higher energy but approximately degenerate with the ground state, whose wave-

function is approximately an anti-symmetric function of the positions of the minima.

Its typical profile is depicted in Fig. 3. The ground state wave-function has the form

ψ0(x) = ψ1(x) + ψ2(x) where ψ1(x) is localized near minimum 1 and ψ2(x) is localized

near minimum 2. The anti-symmetric state would have the form ψa(x) = ψ1(x)− ψ2(x).

ψ
2

ψ
2

ψ
1

ψ
1

ψ
0 +

+=

=

ψ
a

Fig. 3 The almost degenerate state ψa also has two peaks but with differing signs.

Now, when we interact with the system near minimum 1, while we overlap the ground

state wave-function, ψ0(x), we also overlap ψa(x) by the same amount. Of course, the

state that we actually populate is a linear combination of the two,

1√
2

(ψ0(x) + ψa(x)) =
√

2ψ1(x)

whose wave-function is entirely localized at the position of the first minimum. The particle

initially has zero probability of appearing near the second minimum. Our attempt at

teleportation by tunnelling has been foiled by degeneracy.

Anytime the Schrödinger equation can be analyzed semi-classically in this way, it

seems to have a built in protection against the long-ranged behavior that we are looking

for.

In this argument, because it is a superposition of two stationary states with slightly

differing energies, ψ1(x) is not a stationary state. It should have a small time dependence

which eventually mixes it with ψ2(x). But this time dependence mixes it slowly, in fact its

origin is just the conventional tunnelling amplitude for the particle to move from location

1 to location 2 through the barrier in between.

What we need to find is a quantum system where a quantum state which is well

isolated from other states in the spectrum can have peaks at different locations. From

the argument above, it will be difficult to find states of this kind which obey the regular

Schrödinger equation. Where we will look for such states is in quantum condensed matter
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systems, where electrons, or more properly quasi-electrons, can satisfy equations that are

very different from the Schrödinger equation. To motivate this, in the next Section, we

review some of the pictorial arguments for the appearance of fractionally charged states

in polyacetylene. Also, to set the stage for what comes next, we discuss what happens if

the fermion spectrum of polyacetylene were Majorana, rather than complex fermions.

3. The Polyacetylene Story

Before we consider a more quantitative model which will illustrate our point, we

pause to recall the example of the conducting polymer, polyacetylene. Polyacetylene is a

hydrocarbon polymer where each Carbon atom bonds with a Hydrogen atom and as well

forms two strong covalent bonds with neighboring Carbon atoms. The fourth valence

electron is nominally a conduction electron. However, a Peirls instability localizes it into

a charge density wave which is effectively a dimer. The result is a gap in the electron

spectrum at the fermi surface and, without impurities or other structures, the material is

an insulator. There are two degenerate ground states, depending on the direction chosen

by the dimerization. We illustrate these as the A and B phases in the diagram in Fig.

4. In that figure, each line is a covalent bond, using two of the valence electrons of the

Phase A

Phase B

Fig. 4 The two degenerate ground states of polyacetylene.

Carbon atoms.

The conductivity of doped polyacetylene that is seen by experiments is thought to be

mostly attributed to the transport of charged solitons along the polyacetylene molecules.

A soliton in this system is a defect which interpolates between the two phases. We have

depicted a soliton-anti-soliton pair in Fig. 5. Note that it can be obtained from one of

the ground states by flipping the direction of the bonds that lie between the locations of

the solitons. Also note that the energy of the system could be higher than that of the

ground state, since the defects have non-minimal energy configurations, but the energy

density should be concentrated in the vicinity of the solitons. Although it will not be an

issue for us, since we are interested in other aspects of this system, the solitons turn out

to be quite mobile. They also carry electric charge, and can thus account for the high
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Phase A Phase B Phase A

Fig. 5 Solitons form phase boundaries. The soliton anti-soliton pair can be created by flipping
the direction of the bonds between them.

conductivity that is attainable in polyacetylene. The density of solitons can be controlled

by doping. For some original literature on polyacetylene, see refs. [22]-[29].

There is a simple argument that shows that a soliton of polyacetylene has half of the

quantum numbers of an electron [28]. In this argument, we will neglect the spin of the

electron. Thus, for the purpose of our arguments, in figures 4 and 5, each bond stands for

a single electron, rather than a spin up, spin down pair of electrons. Now, consider what

happens when we add an electron to phase A, as in Fig. 6. By flipping the directions

Phase A Phase Aadded electron

Fig. 6 Phase A with an additional electron.

of some bonds, we can see that we have created a soliton-anti-soliton pair, where each

object seems to share half of the added electron. This state is depicted in Fig. 7.

Phase A Phase APhase B

Fig. 7 Beginning with phase A and an additional electron, as shown in Fig. 6, we create a
soliton-antisoliton pair which seems to share the electron.

This brings up the question, is the electron really ‘split‘ between the two sites? Or

does it exist in an entangled state of some sort which has some probability – 1
2

– of the

“whole” electron being located at either site. This question can be made more precise by

asking about measurement of the electron charge, which is a conserved quantum number

in this system. If, by further flipping bonds, we separate the solitons to a large distance,

and then measure the electron charge in the vicinity of one of the solitons, is the result

of the measurement -e/2? Or does this measurement manage to collapse the electron

wave-function somehow so that the result is either 0 or -e? In the latter case, the average

of many measurements might be -e/2, but any single measurement would either see a

whole electron or no electron at all. The answer to this question was found long ago in

ref. [30, 31]. The conclusion was that the measurement of the electron charge localized
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near one of the solitons should yield -e/2. Put equivalently, the fractional charge of the

soliton is a sharp quantum observable. How it manages to do this is interesting, and was

discussed in ref. [31]. We shall review it here.4 This issue has recently been reexamined

[48] in conjunction with some ideas about entangled electron states in Helium bubbles

[49].

The electron spectrum in polyacetylene has an electron-hole symmetry. We could have

created a state with the same energy as the one depicted in Fig. 7 by removing, rather

than adding an electron, to give a hole which is apparently split between the soliton and

anti-soliton, as shown in Fig. 8.

Phase A Phase B Phase A

Fig. 8 A soliton-antisoliton pair with a deficit of one electron.

There are apparently four different states of the soliton-anti-soliton system. There are

the two overall neutral states, one of which is depicted in Fig. 5 and the other obtained

by flipping the intermediate bonds in the opposite direction. We could also go from one

of these states to the other by transporting a whole electron from one soliton to the

other. The other two states we can obtain by either adding or subtracting an electron

from one of the ground states and are those that we have already discussed in Figs. 7

and 8. We can identify these charged soliton states in the low energy electron spectrum.

In the single electron spectrum of polyacetylene with a soliton-anti-soliton pair, there are

two near-mid-gap states which have small positive and negative energies. Thus the low

energy electron spectrum has four states, a ground state, an electron state, a hole state

and an electron-hole state.

By their quantum numbers, the electron and hole states can be identified with the

configurations in Figs. 7 and 8, respectively. The ground state and the electron-hole

state are neutral and must be formed from linear combinations of the two neutral states.

Then, in the electron state, the electron wave-function indeed should have two peaks, as

depicted in Fig. 9. Similarly the hole wave-function also should have two peaks, as is

depicted in Fig. 10. Detailed analysis shows that one is an even and the other is an odd

function of relative distance, as shown in the figures.

The electron wave-function has peaks at two locations. So, we could ask the question

again: Can we use this system for teleportation? Could we populate the electron state

by interacting with one of the solitons and subsequently extract the electron again, and

thereby teleport it, by interacting with the other soliton? To understand the answer,

which will be ‘No!’, it is necessary to realize that, once the electric charge is a sharp

quantum observable, the electronic states of the solitons are disentangled by a local

4 For some other literature on this and closely related issues, see refs. [32]-[47].
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ψ
e
(x)

Phase APhase A Phase B

Fig. 9 The electron wave-function.

Phase A

(x)ψ
h

Phase A Phase B

Fig. 10 The hole wave-function.

measurement of an observable such as the charge.

To see how this happens, let us consider a second quantization of this system. The

electron operator has the form

ψ(x, t) = ψe(x)a + ψh(x)b† + ...

where we have identified an electron annihilation operator a for the positive energy state

and a hole creation operator b† for the negative energy state. We have neglected the

time dependence (the energies of the two states are exponentially small in the soliton

separation). We could as well write

ψ(x, t) = ψ1(x)(a + b†) + ψ2(x)(a− b†) + ... (15)

where ψ1(x) = 1√
2
(ψe(x) + ψh(x)) has support only in the region of the left-hand soliton

and ψ2(x) = 1√
2
(ψe(x)− ψh(x)) has support only near the right-hand soliton in Figs. 9

and 10.

Now, if we concentrate on the region near the left-hand soliton, ψ(x, t) or ψ†(x, t) will

annihilate or create an excitation using the combination of operators

α =
1√
2

(
a + b†

)
, α† =

1√
2

(
a† + b

)

Similarly, if we concentrate on the region around the right-hand soliton, excitations are

created and annihilated using

β =
1√
2

(
a− b†

)
, β† =

1√
2

(
a† − b

)
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The set of operators (α, α†, β, β†) are a Bogoliubov transformation of the creation and

annihilation operators (a, a†, b, b†). This transformation does not violate fermion number

– it superposes operators with the same fermion number. Further, the excitations that

the new operators create or annihilate are entirely localized on one or the other of the

solitons.

Thus, again, we do not have a process whereby an electron or hole state which has

two peaks can be populated by interacting with the system in the vicinity of one of the

peaks. We have failed to find teleportation. Instead we have found fractional charge.

The charge density integrated over the vicinity of one of the solitons turns out to be

Q = −e
(
α†α− 1/2

)
+ charge of electrons − charge of holes

which indeed has half-odd-integer eigenvalues. This Bogoliubov transformation, as a

mechanism for disentangling the charge quantum numbers of the solitons was originally

found in ref. [31].

In eq. (15), we ignored the small time dependence of the near mid-gap states. At

this point, the reader might wonder if the disentanglement of the soliton and anti-soliton

charges that we find by the Bogoliubov transformation would not be undone by this

time variation. Indeed, it would be, eventually. However the time scale is given by the

inverse of the energy gap and is therefore exponentially large in the distance L between

the soliton and anti-soliton, T ∼ m−1emL, where m is the energy gap. This is roughly

the time for quantum mechanical tunnelling between the solitons assuming an energy

barrier of height the energy gap extending over distance L. For macroscopic L this time

T should be very large.

What has prevented teleportation in this second example is again a degeneracy, this

time a slightly more subtle one since, even though the electron and hole state have

identical energies, they have opposite signs of charge. Avoiding teleportation has led to

fractional charge. It has done this by a hybridization, at the second quantized level, of

the propensity of the electron field operator to create an electron and to annihilate a hole

in a local state.

Now, imagine that, rather than complex electrons, polyacetylene had Majorana fermions

which would be obtained by identifying the particle and hole states as the same excita-

tions. (Here, we are ignoring the obvious disaster that this scenario would lead to in

chemistry.) Then, in eqn. (15), we would have to identify a = b and

ψMaj(x, t) = ψ1(x)(a + a†) + ψ2(x)(a− a†) + ... (16)

Now, a + a† cannot be an annihilation operator, in fact

(a + a†)2 = 1

It is similar to the single zero mode operator “α” that we found for a Majorana fermion

in the Eq. (14). In fact, the other combination 1√
2i

(a− a†) now plays the role of “β”, the

“hidden variable”. Its purpose in our previous discussion was to provide a quantization
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which did not violate fermion parity. Here, this hidden variable is just the fermion zero

mode living on the far-away anti-soliton. We could choose the fermion parity conserving

quantization by using the states (|− >, |+ >) defined by

a|− >= 0 , a†|− >= |+ >

a|+ >= |− > , a†|+ >= 0

which can be eigenstates of (−1)F . In these states, the expectation value of the fermion

operator vanishes, for example < 0|ψMaj(x, t)|0 >= 0. However, the two solitons are

invariably entangled. There is now no conserved fermion number that we can use to

measure this entanglement, but there are other effects which we will discuss in later

sections once we have made the present reasoning more solid by discussing it in the

context of a field theoretical model and them formulated a more realistic model with

emergent Majorana fermions.

4. Relativistic Majorana Fermions in a Soliton Background

Single-particle states that are in some sense isolated are well known to occur for Dirac

equations, particularly when interacting with various topologically non-trivial background

fields such as solitons, monopoles and instantons. The consequences of fermion zero modes

such as chiral anomalies [50] and fractional fermion number [13], [14] are well known.

The polyacetylene example, in the context of discussions of fractional charge, that

we used in the previous Section is a well-known example of this. In polyacetylene, the

low energy electron spectrum can be approximately described by the Dirac equation [22,

51] and the solitons which we discussed using pictures have a mathematical description

as soliton-like configurations of a scalar field which couples to the Dirac equation. In

this Section, we will make the analysis of the previous Section more quantitative by

considering the problem of a 1+1-dimensional relativistic Dirac equation coupled to a

soliton background field and a soliton-anti-soliton pair.

Consider, for example, the simple one-dimensional model with Dirac equation

[iγµ∂µ + φ(x)] ψ(x, t) = 0 (17)

The Dirac gamma-matrices obey the algebra

{γµ, γµ} = 2gµν

where gµν =




1 0

0 −1


 is the (inverse of the) metric of two dimensional space-time.

This describes a fermion moving in one dimension and interacting with a scalar field

φ(x) which we shall take to have a soliton-anti-soliton profile. For the purposes of this

discussion, we take the ideal case of a step-function soliton located at position x = 0 and
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a step-function anti-soliton located at x = L,

φ(x) =





φ0 x < 0 , x > L

−φ0 0 < x < L
(18)

We will assume that the solitons are very massive, so they do not recoil when, for example,

fermions scatter from them.

If we take

ψ(x, t) = ψE(x)e−iEt

and choose an appropriate basis for the Dirac gamma-matrices, the Dirac equation be-

comes

i




0 d
dx

+ φ(x)

d
dx
− φ(x) 0







uE(x)

vE(x)


 = E




uE(x)

vE(x)


 (19)

This equation has a particle-hole symmetry

ψ−E(x) = ψ∗E(x)

It is easy to show that it has exactly two bound states. One is a state with small

positive energy and the other is the associated hole state with a small negative energy.

The wave-functions

E+ ≈ +φ0e
−φ0L (20)

ψ+(x) ≈
√

φ0








1

0


 e−φ0x +O(e−φ0L) x < 0




1

0


 e−φ0x +




0

−i


 eφ0(x−L) +O(e−φ0L) 0 < x < L




0

−i


 eφ0(L−x) +O(e−φ0L) L < x

(21)

E− ≈ −φ0e
−φ0L = −E+ (22)

ψ(x)− ≈
√

φ0








1

0


 e−φ0x +O(e−φ0L) x < 0




1

0


 e−φ0x +




0

i


 eφ0(x−L) +O(e−φ0L) 0 < x < L




0

i


 eφ0(L−x) +O(e−φ0L) L < x

(23)
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where, sufficient for our purposes, we give only the large L asymptotics – corrections

to all quantities are of order e−φ0L. Note that ψ−(x) is indeed related to ψ+(x) by

ψ−(x) = ψ∗+(x).

These states have energy well separated from the rest of the spectrum, which is

continuous and begins at E = ±φ0. The energies are also exponentially close to zero

as the separation L is large. Furthermore, each wave-function has two peaks, one near

x = 0 and one near x = L. They have identical profile near x = 0 and they differ by a

minus sign near x = L. This is the same feature of the electron and hole states that we

claimed for the polyacetylene soliton-anti-soliton system in the previous Section.

The second quantized Dirac field now has the form

ψ(x, t) = ψ+(x)e−iE+ta + ψ∗+(x)eiE+tb† + . . . (24)

When L is large, one can consider a second set of almost stationary states which are

the superpositions

ψ0(x) =
1√
2

(
eiE0tψ+ + e−iE0tψ−

)
(25)

≈
√

2φ0








cos E0t

0


 e−φ0x +O(e−φ0L) x < 0




cos E0t

0


 e−φ0x +




0

sin E0t


 eφ0(x−L) +O(e−φ0L) 0 < x < L




0

sin E0t


 eφ0(L−x) +O(e−φ0L) L < x

(26)

which has most of its support near x = 0 and

ψL(x) =
1√
2i

(
eiE0tψ+ − e−iE0tψ−

)
(27)

≈
√

2φ0








sin E0t

0


 e−φ0x +O(e−φ0L) x < 0




sin E0t

0


 e−φ0x +




0

− cos E0t


 eφ0(x−L) +O(e−φ0L) 0 < x < L




0

− cos E0t


 eφ0(L−x) +O(e−φ0L) L < x

(28)

which has most of its support near x = L.

In terms of these wave-functions, which are localized at the sites of the solitons,
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ψ(x, t) = ψ0(x, t)
1√
2

(
a + b†

)
+ ψL(x, t)

1√
2i

(−a + b†
)

+ . . . (29)

We could now consider the creation and annihilation operators

α =
1√
2

(
a + b†

)
, α† =

1√
2

(
a† + b

)

β =
1√
2i

(
a† − b

)
, β† =

1√
2i

(−a + b†
)

By interacting with the system at x = 0, we could as well be dropping the fermion into

the state ψ0, which is localized there and which has exponentially vanishing probability

of occurring at x = L (until sin E0t becomes appreciable, which is just the usual estimate

of tunnelling time through a barrier of height φ0 and width L).

It might seem bizarre that, if we begin with the system in its ground state when

L is small, then adiabatically increase L that we would not simply end up with the

original ground state that has ψ−(x) populated, ψ+(x) empty. In fact, this is a possibility.

However, as we have argued in the polyacetylene example in the previous Section, as

L → ∞, the result is an entangled state of (appropriately defined [30, 31]) fermion

number. If we begin with the original ground state, measurement of the fermion number

which is localized in the vicinity of one of the solitons will collapse the wave-function

to one where the fermion, rather than occupying the negative energy state ψ−, occupies

either the state ψ0 or the state ψL which are localized at x = 0 or x = L, respectively. As

seen from the vicinity of each soliton, these are identical to the Jackiw-Rebbi states [13] of

the fermion in a single soliton background, which have fermion number ±1
2
. These states

are time-dependent, but again, just as in the polyacetylene example, the time scale for

charge fluctuations is just the tunnelling time for a particle to go between the locations

of the solitons.

What about teleportation? Now, our dumping a fermion into the bound state, if

performed near x = 0 would populate the state ψ0(x), rather than ψ+(x), as all lo-

cal operators would couple only to this state. It would have appreciable probability of

appearing at x = L only after a time over order E−1
0 ∼ φ−1

0 eφ0L.

The situation is somewhat different if we assume that the fermion is a Majorana

fermion. The Hamiltonian of a Majorana fermion must have a symmetry which maps

positive energy states onto negative energy states. In the case of (19), we have ψ−E(x) =

ψ∗E(x). Then, a fermion and an anti-fermion have the same spectrum, and we can identify

them as the same particle.

Now, for the Majorana fermion, the pair of wave-functions ψ+(x) and ψ−(x) cor-

respond to the same quantum state which can be either occupied or empty. (We can

arbitrarily assign fermion parities (−1)F = −1 for the unoccupied state and (−1)F = 1

for the occupied state, although +i and −i might be more symmetric). In this case, the

states ψ0 and ψL are wave-functions for superpositions of the occupied and unoccupied

states – they do not have definite fermion parity.
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If we begin with the system where the quantum state is an eigenstate of fermion

parity and we by some process dump a fermion into the bound state near x = 0, its

wave-function automatically has a second peak at x = L and it could in principle be

extracted there. This defines what we mean by “teleportation”.

If we concentrate on the region near x = 0 and we are unaware of the region near

x = L, depending on the quantization, this teleportation will appear as either violation

of conservation of fermion number mod 2 or the existence of a hidden variable in the local

theory.

5. P-Wave Superconductor Model and Andreev States

Of course, the fermions in polyacetylene are not Majorana, they are electrons with

complex wave-functions. The place to look for emergent Majorana fermions in nature

is in superconductivity. Here we shall formulate a model whose basic excitations are

Majorana fermions. We will do this by using contact with a p-wave superconductor to

violate the conservation of total charge, leaving behind conservation of charge modulo 2.

In such an environment, the real and imaginary parts of the electron can have different

dynamics and the electron is essentially split into two Majorana fermions. They can

further be coupled to soliton-like objects, in this case the boundaries of the space, in such

a way that only one of the Majorana fermions has zero modes. Then, the scenario that

we have been looking for, an isolated single-particle state, can be found.

In these materials, mid-gap bound states, called Andreev states, are a common oc-

currence. They typically live at surface of the superconductor [52]. In our case, these

will be Majorana zero modes.

Majorana zero modes of the type that we are discussing are also known to be bound

to vortices in p-wave superconductors where they have the remarkable effect of giving

vortices non-Abelian fractional statistics [53],[54]. For concreteness we will consider a

slightly simpler model one-dimensional model that was originally discussed by Kitaev [2]

in the context of fermionic quantum computation.

We shall consider a quantum wire embedded in a bulk P-wave superconductor as is

depicted in Fig. 11.

¢
¢

¢
¢

¢
¢

1 L

p− wave sc

Fig. 11 A quantum wire embedded in a bulk P-wave superconductor.

We shall assume that the wire has a single channel. We shall also assume that

the dynamics of electrons in the wire are adequately described by a one-dimensional

tight-binding model. We will ignore the spin degree of freedom of the electron. The

phenomenon that we will find is to a first approximation spin-independent.

We will assume that the coupling to the neighboring p-wave superconductor is weak

and its net effect is to give electrons the possibility of entering and leaving the wire in
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pairs by creating or destroying a p-wave cooper pair in the bulk. To describe the electrons,

we will use the Hamiltonian

H =
L∑

n=1

(
t

2
a†n+1an +

t∗

2
a†nan+1 +

∆

2
a†n+1a

†
n +

∆∗

2
anan+1 + µa†nan

)
(30)

Sites on the quantum wire are labelled by n = 1, 2, ..., L. The operators an and a†n
annihilate and create an electron at site n. They obey the anti-commutator algebra

{
an, a

†
n′

}
= δnn′ (31)

The first terms in the Hamiltonian, with coefficients t and t∗ are the contribution

to the energy of the hopping of electrons between neighboring sites. The second pair

of terms, with ∆ and ∆∗, arise from the presence of the super-conducting environment.

They describe the amplitude for a pair of electrons to leave or enter the wire from the

environment. It is assumed that they can do this as a Cooper pair when they are located

on neighboring sites. This is effectively an assumption about the size and coherence of

the cooper pairs in the superconductor. Even if it were not accurate, the smaller next-

to-nearest neighbor, etc. terms that would arise could be taken into account and would

not change our result significantly. The last term is the chemical potential, the energy

of an electron sitting on a site of the wire. We shall assume a reasonable hierarchy of

the parameters, that the amplitude for hopping along the wire is somewhat larger than

hopping to and from the bulk, |t| > |∆|, and that the chemical potential is close enough

to zero that the electron band has substantial filling, |µ| < |t|.

5.1 Spectrum of Single-Particle States

Let us discuss the spectrum of the single-particle states in the many-body theory

described by the Hamiltonian (30). If t = |t|eiφ and ∆ = |∆|e2iθ, by redefining an →
ei(φ+θ)an for n odd and an → ei(φ−θ)an for n even, we remove the complex phases of t and

∆, which we can henceforth assume to be positive real numbers. The equation of motion

for the fermion wave-function is gotten by taking the commutator of its operator ak with

the Hamiltonian (30),

i~ȧn = [an, H]

for which we get

i~
d

dt
an =

t

2
(an+1 + an−1)− ∆

2

(
a†n+1 − a†n−1

)
+ µan (32)

for the sites n = 2, ..., L− 1.

Because we are using open boundary conditions – the chain simply ends at n = 1 and

n = L, the equations for d
dt

a1 and d
dt

aL differ from (32) by missing terms. When we solve

(32) as a wave equation, it will be convenient to deal with this by extending the chain
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by one site in each direction and then eliminating the extra sites by imposing Dirichlet

boundary conditions,

a0(t) = 0 , aL+1(t) = 0

With these conditions, (32) describes the dynamics for all n = 1, 2, ..., L.

Now, it is most efficient to decompose the electron into real and imaginary parts,

an = bn + icn, and assemble them into a spinor

ψn =




bn

cn


 (33)

Note that this spinor obeys the Majorana condition

ψn = ψ∗n (34)

The equation for the wave-function is



µ ~ d
dt

−~ d
dt

µ


 ψn +




1
2
(t−∆) 0

0 1
2
(t + ∆)


 ψn+1 +




1
2
(t + ∆) 0

0 1
2
(t−∆)


 ψn−1 = 0 (35)

In order to solve the equation, we will make the ansatz

ψn(t) = e−iωt/~ψn(ω) (36)

The Majorana condition for energy eigenstates is

ψ∗n(ω) = ψn(−ω)

We will normalize the wave-functions with the condition

L∑
n=1

|ψn(ω)|2 = 1 =
L∑

n=1

(|bn(ω)|2 + |cn(ω)|2)

Since the equation and boundary conditions are linear, we can further make the ansatz

that the wave-functions are superpositions of plane waves,

ψn(ω) = ζn




u(ζ)

v(ζ)


 (37)

Then, the difference equation (35) becomes

The equation for the wave-function is



1
2
t(ζ + 1/ζ)− 1

2
∆(ζ − 1/ζ) + µ −iω

iω 1
2
t(ζ + 1/ζ)− 1

2
∆(ζ − 1/ζ) + µ







u(ζ)

v(ζ)


 = 0 (38)
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which has a solution when the frequencies obey the dispersion relation

ω2 =

[
1

2
t(ζ + 1/ζ) + µ

]2

−
[
1

2
∆(ζ − 1/ζ)

]2

(39)

For a given real value of ω, there are generally four wave-vectors which satisfy this dis-

persion relation,

ζω , 1/ζω , ζ∗ω , 1/ζ∗ω

To find a solution of the wave equation, we must take superpositions of the four solutions

of (38) with each of these four wave-vectors. Then we must adjust the four coefficients

of the superposition in order to satisfy the four boundary conditions. (Remember that

the boundary conditions are for spinors, so there are four boundary conditions in total.)

Three of the boundary conditions can be solved by adjusting the coefficients in the super-

position. The fourth superposition coefficient can eventually be determined up to phases

by normalizing the wave-function. The fourth boundary condition, which has yet to be

satisfied, then gives a condition that the wave-vector must obey. Plugging the resulting

wave-vector back into the dispersion relation (39) then gives the allowed energy eigen-

value. This gives an algorithm for finding the energies, the allowed wave-vectors (which

are 1
i
ln ζ and are generally complex) and the wave-functions.

When L is large, the solutions are of two kinds. One are to a good approximation

continuum states, where ζ = eik and the continuum spectrum is

ω(k) = ±
√

[t cos k + µ]2 + ∆2 sin2 k

with k ∈ (−π, π] (it is quantized approximately as k = 2π · integer/(L+1) which becomes

a continuum when L → ∞). This spectrum has an energy gap. The point of closest

approach of the positive and negative energy bands occurs when cos k = −tµ/(t2 −∆2)

and the gap is Egap = 2∆
√

t2−∆2−µ2

t2−∆2 . We will assume that this gap is significant, so that

the mid-gap states that we will discuss next are indeed well isolated.

The other modes in the spectrum are a pair of mid-gap states. When L is large, these

states have energies that are exponentially small in L, one is positive, one is negative

and they have equal magnitudes. In the following, we will solve for the spectrum of these

mid-gap states in the approximation where effects that are exponentially small in L are

neglected.

We begin with an un-normalized spinor

ζn




iω

1
2
t(ζ + 1/ζ)− 1

2
∆(ζ − 1/ζ) + µ


 + Aζ−n




iω

1
2
t(ζ + 1/ζ) + 1

2
∆(ζ − 1/ζ) + µ




+Bζ∗n




iω

1
2
t(ζ∗ + 1/ζ∗)− 1

2
∆(ζ∗ − 1/ζ∗) + µ


 + Cζ∗−n




iω

1
2
t(ζ∗ + 1/ζ∗) + 1

2
∆(ζ∗ − 1/ζ∗) + µ




(40)
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We will solve the boundary condition for the mid-gap state in the limit where L is

large. There, we expect the solution to be very close to ω = 0, for which we then

need a wave-vector which solves t(ζ + 1/ζ) + 2µ = −∆(ζ − 1/ζ). Then, to a first

approximation, the terms with A and C are absent from (40) and we must choose the

B = −(ζ − 1/ζ)/(ζ∗ − 1/ζ∗) in order to satisfy the boundary condition at n = 0. Since

ζ = − µ

2(t + ∆)
+ i

√
t−∆

t + ∆

√
1− µ2/4(t2 −∆2)

so that ζζ∗ = t−∆
t+∆

< 1, this gives a wave-function which is maximal at n = 1 and which

decays exponentially as n increases. This would indeed be the solution for the mid-gap

state on the half-line when L → ∞. When L is finite, rather than infinite, in order to

satisfy the boundary condition at n = L+1 we must include an amplitude for the growing

solution. It can be obtained from the decaying one by simply replacing n by L + 1 − n

and multiplying the spinor by σ2. Thus, to a good approximation the mid-gap solution

is

ψ+
n =

√
∆

2t

t2 − µ2

t2 −∆2 − µ2




(
−µ + i

√
t2 −∆2 − µ2

)n

−
(
−µ− i

√
t2 −∆2 − µ2

)n

(t + ∆)n




0

i


 +

+

(
−µ + i

√
t2 −∆2 − µ2

)L+1−n

−
(
−µ− i

√
t2 −∆2 − µ2

)L+1−n

(t + ∆)L+1−n







1

0




This wave-function has infinitesimal positive energy. The wave-function with infinitesimal

negative energy is given by

ψ−n =

√
∆

2t

t2 − µ2

t2 −∆2 − µ2




(
−µ + i

√
t2 −∆2 − µ2

)n

−
(
−µ− i

√
t2 −∆2 − µ2

)n

(t + ∆)n




0

i


−

−

(
−µ + i

√
t2 −∆2 − µ2

)L+1−n

−
(
−µ− i

√
t2 −∆2 − µ2

)L+1−n

(t + ∆)L+1−n







1

0




We will abbreviate these by naming the function

φn = i

√
∆

2t

t2 − µ2

t2 −∆2 − µ2

(
−µ + i

√
t2 −∆2 − µ2

)n

−
(
−µ− i

√
t2 −∆2 − µ2

)n

(t + ∆)n
(41)

where φn = φ∗n and we have normalized to

∑
n

|φn|2 =
1

2
(42)
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The function φn has maximum magnitude at n = 1 and it decays exponentially as n

increases. We shall use the notation

ψ+
n = φn




0

1


− φL+1−n




i

0


 (43)

ψ−n = φn




0

1


 + φL+1−n




i

0


 (44)

We have normalized the spinors so that
∑

n

ψ±†n ψ±n = 1 (45)

Note that, these wave-functions satisfy the Majorana condition ψ−n = ψ+∗
n . As ex-

pected, they have support near n = 1 and n = L and are exponentially small in the

interior of the quantum wire, far from the boundaries. Further, we have adjusted phases

so that the wave-functions are identical in profile in the region near n = 1. Then, we

expect that they differ in sign in the region near n = L and we confirm from that above

that this is so. Also, note that they are complex. To form the real, Majorana spinor, we

must superpose them with a creation and annihilation operator,

ψn(t) = ψ+
n e−iωta + ψ−n eiωta† + non− zero energy states (46)

Here a and a† are the annihilation and creation operators for the mid-gap state and ω is

their exponentially small energy. Ignoring the energy, we can also write this operator as

ψn(t) = φn




0

1


 (a + a†) + φL+1−n




1

0


 1

i
(a− a†) + . . .

The first term on the right-hand side has support near n = 0 and decays exponentially as

n increases from 1. The second term has support near n = L and decays exponentially

as n decreases from L. They each multiply the operators α = 1√
2

(
(a + a†

)
and β =

1√
2i

(
a− a†

)
, respectively. These are analogous to the operators which we introduced on

Section 1. a and a† must have the anti-commutator
{
a, a†

}
= 1

which has a two-dimensional representation, the states |− > and |+ > of Section 1 which

we copy here for the reader’s convenience,

a|− >= 0 , a†|− >= |+ >

a|+ >= |− > , a†|+ >= 0

All other excited states of the system are created by operating creation operators for the

other, non-zero energy excitations. Remember that it is the states |+ > and |− > which

we expect to be eigenstates of fermion parity, (−1)F .
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5.2 Second Quantized Electron Operator

Now, we recall that the upper and lower components of the spinor ψn(t) that we

discussed in the previous subsection are simply the real and imaginary components of the

electron field operator, which we can now reconstruct,

an(t) = φL+1−n
1

i

(
a− a†

)
+ iφn

(
a + a†

)
+ . . . (47)

This is now a complex operator, but its real and imaginary parts have support at opposite

ends of the quantum wire. The part of the operator which has not been written, and is

indicated by dots in (47), are superpositions of creation and annihilation operators for

continuum states. All such states have energies above the gap and extended, plane-wave-

like wave-functions. Note that now that the phase symmetry of the system has been

broken by coupling to the superconductor, the real and imaginary parts of the electron

operator will generally have different properties. This interesting fact will not concern

us in the following and we will focus on the mid-gap, or zero mode part of the electron

operator.

Note, now, if we operate with any local operator in the vicinity of n = 1, the electon

operator acts as if it were composed of the combination of zero mode operators (a + a†).
As we have discussed before, this operator squares to a constant. There cannot be any

states that it annihilates. Thus, operating it on any state of the system, in the region

where the zero mode wavefunction has support, will have an effect. What it does is flip

the state from |− > to |+ >. Since it is a hermitian operator, it is possible to diagonalize

it, the states 1√
2
(|− > +|+ >) and 1√

2
(|− > +|+ >) are its eigenvectors. However, these

eigenvectors are not eigenstates of fermion parity.

6. Long Ranged Correlations of Electrons

What about teleportation? Let us imagine that we begin with the system in one

of its ground states, say |− > and inject an electron so that at time T = 0 it is resting

at site #1. This means, we being with the state a†1|− >, where, as we recall, a†1 is the

creation operator for an electron at site #1.

We then ask what is the quantum transition amplitude for the transition, after a time

T has elapsed, of this state to one with the electron located at position #L. The final

quantum state is a†L|− >. The amplitude is given by

A =< −| aL eiHT a†1 |− >= |φ0
1|2 + (T and L−dependent) (48)

The T - and L-dependent parts of this matrix element represent the usual propagation via

excited quasi-electrons which must travel across the wire. The first term is non-zero and

is T and L-independent. By ‘teleportation’, we are referring to this part of the amplitude.

Here, we can evaluate the amplitude explicitly. It is

ATel =

(
2∆

t

)(
t2 −∆2 − µ2

(t + ∆)2

)
(49)
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Which can be appreciable, in the 10-30 percent range, for a surprisingly wide choice of

parameters.

However, the teleportation probability is the square of this amplitude, which is some-

what smaller. We could ask a more sophisticated question: What is the probability that

the electron, once injected at n = 1 appears anywhere within the exponential range of

the zero mode wave-function at n = L. This probability would be given by

PTel =
∑

n

|φn|2|φ0
1|2 =

1

2

(
2∆

t

)(
t2 −∆2 − µ2

(t + ∆)2

)
(50)

This is what we shall call the “teleportation probability“. Again, for a range of parameters

t, ∆ and µ, it can be appreciable.

7. Discussion

The apparently instantaneous propagation of an electron would seem to be a poten-

tial violation of Einstein causality, since in principle a message could be sent at a speed

faster than that of light.

Let us review the nature of the system that we have constructed. Once the quantum

wire - p-wave superconductor system is prepared, the extended Majorana state of the

electron is already there, ready for use. The system has a two-fold degeneracy: at low

energy, there are two states |− > and |+ >. These are not normal quantum states in

that they differ by a quantum number which we would like to preserve, fermion parity

(−1)F .

Thus, if we do not allow superpositions of these states, this is effectively a classical

bit, like a classical switch that can either be OFF or ON, the wave-function can be in

one state or the other.

The system moves from OFF to ON by absorbing or emitting an electron in a way

that flips the vacuum from one state to the other. This should occur somewhere in the

vicinity of the ends of the wire, where the zero mode wave-functions have support. It

can move back from ON to OFF by the identical process, again absorbing or emitting a

single electron.

This leads to the rather drastic conclusion that there could be super-luminal transfer

of information in this system. One would need only to prepare the system in one of its

ground states, with a sender sitting at 1 and a receiver sitting at L. Either ground state

is sufficient and neither the sender nor the observer needs to know which it is. All the

receiver has to do is wait for an electron to arrive. If it arrives with energy at or above

the electron energy gap, he or she can conclude that it propagated normally and was

sent at some time in the past. However, if it arrives at very low energy, he or she knows

that it tunnelled and that it was sent by the sender at that instant. This is seemingly an

instant transfer of information over a finite distance.

There is a obvious way out of this, but it means giving up the fermion parity sym-

metry that has until now been sacred. If we allow superpositions of the states |− > and
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|+ > which have even and odd fermion number, then the degenerate ground states are

a quantum rather than classical two-level system, there are two states and any superpo-

sitions are allowed. Now, in this system, it is easy to prepare states where an electron

can spontaneously appear or disappear. Take, for example an eigenstate of the operators

that we called α and β. In their eigenstates, 1√
2
(|− > ±|+ >), the electron operator has

an expectation value < an(t) >= ±φn ± φL+1−n. It would thus have an amplitude for

simply vanishing or appearing spontaneously.

Then, when the observer at L detects the arrival of a low energy electron he or she

cannot distinguish one which was sent from the other side of the wire from one which

is spontaneously created. This restores Einstein causality at the expense of our having

to admit states onto physics which are not eigenstates of fermion parity. There is the

further question of whether such states are consistent with three dimensional physics.

Fermion number mod 2 is an important conservation law in three dimensional physics [55].

Even though the quantum wire that we have discussed is one-dimensional, it is embedded

in three dimensional space and the electrons that we are discussing are spin-1
2

particles in

three dimensional space. This means that their wave-functions individually change sign

under a rotation by 2π. More importantly, a state with odd fermion number must change

sign under a rotation by 2π whereas a state with even number should remain unchanged.

A rotation by angle 2π should not affect physics. Thus, the relative sign of even and odd

fermion number states should not have any physical consequences.

If we did allow a superposition of the two states, they would form a single qubit. We

could parameterize the state-vector by a point on the Bloch sphere (θ, φ) where the state

is

|θ, ϕ > = cos
θ

2
|− > +eiϕ sin

θ

2
|+ > (51)

Points on the two-dimensional unit sphere are specified by the unit vectors

n̂ = (sin θ cos ϕ, sin θ sin ϕ, cos θ)

and 0 ≤ θ ≤ π, −π < ϕ ≤ π. However, as we have argued, the relative sign of the two

states should not be an observable. Then the set of “physical states” of the qubit would

be the Bloch sphere with a further identification

ϕ ∼ ϕ + π (52)

Of course, this identification is allowed only if there are no experiments, even in principle,

which could measure the relative sign of the two states in the superposition. Normally,

one could measure that sign by an interference experiment.

For example, we could attempt to observe the relative sign by examining interference

between the electron which arrives by tunnelling and the one which arrives by conventional

transport. However, the teleportation amplitude in the state φ

< θ, ϕ| aL eiHT a†1 |θ, ϕ >= cos θ[teleportation] + [transport] (53)

The teleportation amplitude is diminished by a factor of cos θ whereas the transport

amplitude is unchanged. One can make the teleportation amplitude vanish by adjusting
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θ = π/2. However, the relative amplitude cannot be used to measure the relative sign of

the two components of the wave-function.

There is an amplitude for an electron to vanish,

< θ, ϕ| eiHT a†1 |θ, ϕ >∼ i sin θ cos ϕ · φ1 (54)

and to appear spontaneously

< θ, ϕ| aL eiHT |θ, ϕ >∼ sin θ sin ϕ · φ1 (55)

As we expect, the latter two amplitudes change sign when we put ϕ → ϕ + π. Actual

quantum observables are probabilities which are the modulus squares of amplitudes. They

are also insensitive to the relative sign of the two parts of the wave-function.

The above probability amplitudes do not offer a way to distinguish the quantum

states with ϕ and ϕ + π. At this point, we have not ruled out, but also we have not

devised an experiment by which they could be distinguished. Indeed, if there is no such

experiment, we are free to cut the Bloch sphere in half by the identification (52) and the

ground states would form this peculiar qubit. Teleportation still happens, but so does

the spontaneous disappearance or appearance of a single electron and the contradiction

with Einstein locality is removed.

We cannot exclude the possibility that the effect that we have been discussing could

be interfered with by the superconductor which the quantum wire is in contact with.

Here, we have assumed that it acts as a simple bath which supplies and absorbs Cooper

pairs but is otherwise innocuous. We cannot rule out that it also has exotic states that

should be included in the picture.
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