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Abstract: There has been presented an attempt to transfer the fundamental ideas of physics

of continual currents and potentials, described in the previous articles of this series [1], [2], [3],

from the classical theory to the quantum relativistic theory.

The concept of multidimensional Dirac space, which should contain wave equations of the

relativistic quantum theory, has been introduced. Dirac space dimension d is determined by

Yang-Mills multiplicity of the sector of physics: d = 8 for the singlet (quantum electrodynamic

states); d = 20 for the two-sector singlet-triplet states; d = 52 for the three-sector singlet - triplet-

octuplet states. It has been shown that the quantum relativistic state can not be described by

the unique wave function (four-component Dirac vector). Singlet states are described by a pair

of Dirac vectors, two-sector singlet-triplet states are described by four Dirac vectors, eight Dirac

vectors are necessary for description of the three-sector singlet-triplet-octuplet states.

It has been shown that the necessity to consider the Riemann curvature of space causes

additional difficulties in the process of construction of the quantum relativistic theory.
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1 Introduction.

From Classical Field Theory to Quantum Relativistic Theory.

Dirac Space

The classical field theory with continual currents, presented in the preceding articles of

this series [1], [2], [3], did not require in its formulation any radical deviation from the
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fundamental ideas formed in theoretical physics of the XXth century. The main broaden-

ing of the well-established ideas in these articles consisted of rejection of the mechanical

interpretation of 4-currents appearing in the theory: the space-like 4-current is not gen-

erated by the motion of the material (”ponderable”, as Albert Einstein would have put

it) charge carrier; the space-like current is primary and can not be reduced to any other,

more simple entity.

It took the physicists of the XIXth century several decades to abandon the attempts

to provide mechanical interpretation of the electromagnetic field. J. Maxwell was per-

sistently searching for these interpretations; the traces of this search can be found in

H. Hertz’s works, but the works of G.A. Lorenz are already free from the attempts of

mechanical interpretation of field: field is primary and can not be reduced to anything

simpler.

Future historians of science may find it difficult to understand why the rejection of me-

chanical interpretation of the second half of the electromagnetic dyad, 4-current, was a

full century late. This broadening of Lorentz approach to electromagnetic theory seems

quite natural and expected. Undoubtedly, it becomes natural and even trivial only with

the simultaneous recognition of dyadic nature of a field: ”a current and a potential” as

the two inseparable and equal halves of the continual field dyad, the yin and yang of

electrodynamics.

The field thought of the most outstanding representative of the ”field ideology” of the

XXth century physics, Albert Einstein, was distinctively monadic. Einstein perceived

the field as a monad described by a single physical-geometric object, and he hoped to see

the particles as bunches of field energy; perhaps – as the field singularities, characteristics

and motion of which are completely determined by the field and can not be set arbitrarily.

For thirty-six years of thinking and working on this series of articles, I have often asked

myself a question: ”Would Albert Einstein have accepted the embodiment of Maxwell

field program, which is presented in the first article of this series [1]?” Now I believe,

that after the period of ”monadic resistance” and stern grumbling, Einstein would have

supported such version of electrodynamics. This is really a completely field and totally

classical theory, and, besides, it incorporates the Einstein gravitation theory.

In a sense, the theory presented in articles [1], [2], [3], is the embodiment of Einstein’s

ideal of the classical field theory achieved at the cost of the rejection of monadic descrip-

tion of fields and the rejection of visual and naive mechanical interpretation of currents.

Even if the field pattern of physical reality, presented in articles [1], [2], [3], is not the final

version of Einstein’s ideal, it, anyway, indicates a decisive step towards this ideal. And,

after all, does not the idea of the primary nature of space-like 4-current open not less

exciting intellectual perspective for theoretical physics than it once opened – ungrounded

and arising from nowhere – Louis de Broglies idea of matter waves; the idea, which was

decisively and immediately supported by Einstein.

Albert Einstein was convinced that the nonlinearity of field equations was necessary for

existence of particles as some bunches of field energy. However, this is true only for the

monadic theory.
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Dyadic field electrodynamics, presented in article [1], is non-linear (even if we omit the

requirement of the Riemann nature of geometry) despite the linearity of field equations:

the boundary conditions for currents at the boundaries of current zones are non-linear,

and the mere presence of previously unknown boundaries of current zones in the theory

makes the problem nonlinear (even if the boundary conditions were linear).

In the quantum version of physics of currents and potentials, we have to turn decisively

off the beaten ”field” track of physics of the XXth century. In the classical version of

the theory, presented in the preceding articles of this series, we were just slightly com-

plementing this beaten track dating back to Faraday, Maxwell and Lorentz. We tried to

use the ”classical” asphalt to connect this track of electrodynamics with the ”branch”

of Yang-Mills theory which for decades had been positioning itself as purely quantum

pathway that had emerged from quantum wasteland, without any classical basis.

Consistent, shrunk into itself, free from any self-contradictions and divergences, the quan-

tum formulation of the field theory requires a rather radical break from the existing ap-

proach of modern theoretical physics - such a radical break that perhaps it could not have

been approved by any of the genius founding fathers of quantum mechanics and quantum

field theory. The essence of this break is to change the interpretation of the concept of

physical reality itself.

For classical relativistic physics, field dyads in the three sectors of physics are the physical

reality which is immersed in the four-dimensional space-time continuum, the Riemann

geometry of which obeys the Einstein equations. In quantum relativistic physics, we

apparently have to assume that semi-components of the field dyads (currents or poten-

tials), along with the space-time coordinates, are not unknown physical quantities, but

just the arguments of the Dirac wave functions. In other words, during the transition

from classical to quantum version of the theory, the fields are no longer an element of

physical reality and they turn into the capacitance for reality – the reality of an en-

semble of field realizations; the capacitance supplementing the space-time or momentum

four-dimensional continuum with its dimensions.

Mathematically, the ensemble is described by some set of wave functions - the Dirac

spinors. These spinors in quantum electrodynamics depend on eight arguments: four

space-time coordinates (or four coordinates in the momentum space) plus four current

components (or four potential components). In the complete three-sector problem of

physics (”the problem of the Standard Model”), each spinor has 52 arguments: 4 space-

time coordinates (or 4 coordinates in the momentum space) plus four components of

each of the twelve currents of the Standard Model (or each of the twelve potentials, or

arbitrary combination of currents and potentials, constructed so that spinor arguments

contain only one semi-component – current or potential – of each of the field sector dyad

of the three sectors of physics). Wave equations for the Dirac spinors should be formu-

lated as nonlinear equations in partial derivatives in this fifty-two-dimensional space. On

the account of the missing of any meaningful term that would adequately describe this

52-dimensional continuum, we shall call it the Dirac space . In singlet (electrodynamic)

states, dimension d of the Dirac space is equal to eight; in pure triplet Yang-Mills states
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d = 16, in mixed singlet-triplet (electroweak) states d = 20, in pure octuplet (chromody-

namical) Yang-Mills states d = 36; in total three-sector states d = 52.

For quantum version of the theory, in contrast to classical version, it is impossible to intro-

duce the concept of field tensor – the operation of potential differentiation by coordinates

does not have any physical sense: coordinates and potentials are equal arguments of the

Dirac spinors in the Dirac space. Accordingly, the quantum versions of the Maxwell and

Yang-Mills equations can only be some operator relations. Basic wave equations for the

Dirac spinors must be constructed as some radical generalizations of the Dirac equations.

The Dirac equation itself, losing the status of the exact equation of physics, in the frame-

work of this theory can be some approximate relation which appears after some procedure

of an approximate integration of the wave equations by the field arguments, like in the

classical electrodynamics of continual currents described in article [1], the Lorenz equa-

tion (equation of motion of a point charge carrier) appears as an approximate equation

after the approximate integration of the equations of continual theory by the volume

occupied by currents, in the approximation of a ”weak external field” (see [1]).

We did not manage to construct the basic wave equations of the theory in this work.

Moreover, according to the ”rule of Tridentine prudence” [3], we would prefer to avoid

premature discussion of the difficult questions of geometry: what space should the equa-

tions of gravitation, controlling the metric, be entered in – in the usual four-dimensional

continuum , or in 52-dimensional Dirac continuum? How should the energy-momentum

tensor be constructed in the theory which does not have a field tensor?, etc.

Within the framework of this theory, we have an intention to describe the method, by

means of which it is possible to construct the Dirac spinors on the grounds of observa-

tional data1 and to describe the connection between spinors.

We shall preface this description with presentation of non-relativistic quantum theory in

such formulation which allows a natural transfer to the relativistic realm. Discussion of

the foundations of quantum mechanics, learnt already at the University freshman class,

can make a skilled reader bored and irritated. By putting up with this, the author hopes

that this form of presentation of a well-known non-relativistic scheme will make it easier

for the reader to further perceive the relativistic relations in the Dirac multi-dimensional

space.

2 Non-relativistic Scheme

(Born-Heisenberg-Schrodinger Program)

2.1 Born Density. De Broglie and Born Postulates

Non-relativistic quantum mechanics is based on the Newtonian concept of physical system

as an object consisting of point particles n, coupled by forces of a long-range interaction,

but, in contrast to Newtonian mechanics, in quantum mechanics, the n – particle system

1 Here it would be appropriate to remind of the uncompromising Einsteinian maxim: ”Only the theory

determines what can be observable”.
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itself is not an element of reality allowing a mathematical description. The ensemble of

identical to each other n-particle systems is the element of reality, i.e. an infinite number

of the systems, from which it is possible to extract individual copies of such systems for

making instantaneous coordinate measurements of all the particles of the system. Co-

ordinate measurement in the frames of non-relativistic conception of reality can be, in

principle, made with unlimitedly high precision. The process of this measurement de-

stroys the system completely, and it is impossible to make further measurements with

the same copy of the system.

In contrast to Newtonian mechanics, where only point coordinates are observable

quantities, quantum mechanics is based on the postulate of the existence of one more

observable quantity for each particle – momentum vector k, which has the dimension

[length]−1. Within the framework of the non-relativistic concept, particle momentums

can be measured, in principle, with unlimited precision. The process of this measurement

destroys the system completely, and it is impossible to make further measurements with

the same copy of the system.

The fundamental postulate of measurability of particle momentum and existence of an

infinite three-dimensional momentum space with Euclidean metric, apparently, should

be formulated explicitly and should be called de Broglie postulate. This postulate trans-

forms geometric spatial monad of Newtonian mechanics into space-momentum dyad of

quantum mechanics {x|k}. This is an important step on the way of relativistic trans-

formation of space-time four-dimensional Minkowski monad xν into the dyad consisting

of 4-coordinates xν and 4-momentums kν : {xν kν}. The essential feature of relativistic

quantum theory is that we can not interpret semi-components of this dyad – xν and

kν – as coordinates and momentums of the point object: point objects do not exist in

relativistic physics. In quantum relativistic physics we should just talk about coordinate

space xν and momentum space kν and assert that with corresponding measurements, we

have an opportunity to discover something in the neighborhood of point xν (or point

kν) on a small but finite element of the oriented three-dimensional hyper-surface σ in

four-dimensional coordinate space (or momentum space).

But let us revert to non-relativistic physics.

For our purposes it is sufficient to concentrate on the accurate formulation of mathemat-

ical apparatus which is needed to describe the non-relativistic ensemble of one-particle

systems (n=1).

Let us suppose that at some instant of time t, we made instantaneous coordinate mea-

surement N
x
t of copies of the system, and let us assume that ∆N

x
t of these measurements

have registered the presence of the particle in some small but finite volume ∆V
x
in the

neighborhood of the point with radius-vector x in a pre-selected inertial frame of refer-

ence. We postulate that with the unlimited growth of a number of measurements of N
x
t

there is limit R
x

t of the relation ∆N
x
t/N

x
t. Due to arbitrariness of the shape and volume

of ∆V
x
this limit can be expressed as ∆V

x
volume integral of some function ρ

x
(x, t) that
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depends on coordinates x at the instant of time t:

R
x

t = lim
N
x
t→∞

(
∆N

x
t

N
x
t

)
=

∫
∆V

x

ρ
x
(x, t)dV

x
. (1)

It is obvious that function ρ
x
(x, t), determined by relation (1), is nonnegative, integrable

with any small volume ∆V
x
into the neighborhood of any point x and normalized per unit

under integration into (1) over the entire infinite three-dimensional coordinate space. The

dimension of ρ
x
(x, t) is cm−3.

In an absolutely similar way, making measurements of momentum for N
k
t copies of a

one-particle system at the same instant of time t 2, we can discover that ∆N
k
t of

these measurements register the presence of a particle in a small but final volume ∆V
k

of momentum space in the neighborhood of some momentum k. The equipment for

measuring momentum k is meant to be fixed relative to the same inertial system in

which coordinates x are measured and to agree in the orientation of coordinate axes with

the equipment that measures coordinates. We postulate that with the unlimited growth

of a number of measurements of N
k
t there is a limit R

k
t for relation ∆N

k
t/N

k
t. Due to

arbitrariness of the shape and size of volume ∆V
k
, this limit can be expressed as a volume

∆V
k
integral of some function ρ

k
(k, t) that depends on momentums k at the instant of

time t:

R
k

t = lim
N
k
t→∞

∆N
k
t

N
k
t

 =

∫
∆V

k

ρ
k
(k, t)dV

k
. (2)

Function ρ
k
(k, t), determined by relation (2), is nonnegative, integrable with any small

volume ∆V
k
into the neighborhood of any momentum k and normalized per unit under

integration into (2) over the entire infinite three-dimensional momentum space. The di-

mension of ρ
k
(k, t) is cm3.

We shall call functions ρ
x
and ρ

k

3, determined by relations (1) and (2), the Born densities:

ρ
x
is the Born density in coordinate space, ρ

k
is the Born density in momentum space.

Let us call the assertion of the existence of limits (1) and (2) and, respectively, the exis-

tence of the Born densities, as the Born postulate .

The use of terms, established in quantum mechanics, requires the obligatory use of the

term ”probability” in naming functions ρ
x
and ρ

k
: ρ

x
is the ”probability density of finding

the particle in the coordinate space”, and ρ
k
is the ”probability density of finding a particle

in the momentum space”.

2 It is obvious that this expression is principally non-relativistic; it can not be given Lorentz-invariant

sense. However, it does not cause any difficulties, since the choice of instant of time for measurements

in momentum space does not matter for the ensemble of isolated systems.
3 The indications on the arguments of these functions (x, t) or (k, t) will further be omitted.
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We suppose that the term ”probability” in definition of the Born density is redundant.

This term refers to the artificial, archaic and unlawful (or subconscious) preservation of

Newton’s idea of a separate copy of the system as an element of physical reality in quan-

tum mechanics. In quantum mechanics, infinite ensemble of systems is physical reality:

the measurements are made on some individual copies of the system, but mathematical

description is only possible for ensemble. In fact, individual system does not have ”being-

in-time” which is comprehensible for a macro-observer, but ensemble has such being.

All physical information on the ensemble is enclosed in a pair of the Born densities{
ρ
x
, ρ
k

}
. We shall call this pair ”the Born pair”.

2.2 Heisenberg Postulate

Awareness of the Born pair allows to calculate different characteristics of the ensemble,

such as the ensemble mean value of i-component of radius vector ⟨xi⟩:

⟨xi⟩ =
∫
ρ
x
xidV

x
, (3)

or the ensemble mean value of i-component of momentum ⟨ki⟩:

⟨ki⟩ =
∫
ρ
k
kidV

k
. (4)

Integration by the entire three-dimensional coordinate space (3) or by the entire three-

dimensional momentum space (4) is implied in these relations.

In the same way we can calculate the mean ensemble value of the square of i-Cartesian

component of radius-vector ⟨x2i ⟩, or the mean ensemble value of the square of i-Cartesian

momentum component ⟨k2i ⟩:
⟨x2i ⟩ =

∫
ρ
x
x2idV

x
,

⟨k2i ⟩ =
∫
ρ
k
k2i dV

k

as well as the dispersion value of each coordinate σ
x
i and each momentum component σ

k
i:

σ
x
i =

√⟨
(xi − ⟨xi⟩)2

⟩
=
√
⟨x2i ⟩ − ⟨xi⟩2,

σ
k
i =

√⟨
(ki − ⟨ki⟩)2

⟩
=
√
⟨k2i ⟩ − ⟨ki⟩2.

Let us form 3× 3-Heisenberg matrix Hij of quantities of dispersions:

Hij = σ
x
i σ
k
j. (5)

It is obvious that the elements of matrix (5) are nonnegative. However, for diagonal

elements, a stronger Heisenberg inequality is also valid:

Hij ≥
1

2
δij. (6)
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This inequality expresses a fundamental postulate of non-relativistic quantum physics of

ensembles:

There are only such Born pairs

{
ρ
x
, ρ
k

}
that satisfy Heisenberg inequality (6).

(”The Heisenberg postulate”).

We shall call the Born pair which satisfies inequality (6), the Born ensemble.

2.3 Schrödinger Theorem

The validity of the statement, which we will call Schrödinger theorem , follows from

the Heisenberg Postulate:

For each Born ensemble there is a pair of real functions S
x
(x, t) and S

k
(k, t), (the ”phase

pair”) such one that the complex functions ψ
x
and ψ

k
, determined by the relations

ψ
x
=
√
ρ
x
e
i S
x, (7)

ψ
k
=
√
ρ
k
e
i S
k, (8)

are Fourier images of each other .

ψ
x

FT
= ψ

k
. (9)

In relation (9) symbol ”
FT
=” describes the procedure of non-relativistic three-dimensional

Fourier transform, connecting the functions in the coordinate space with the functions in

the momentum space:

ψ
x
=

1

(2π)3/2

∫
ψ
k
eik·x dV

k
,

ψ
k
=

1

(2π)3/2

∫
ψ
x
e−ik·x dV

x
.

(10)

Integrals in (10) are taken over the entire momentum space or, respectively, over the

entire coordinate space. The two equations (10) are not independent: if the first one is

satisfied, the second one is also satisfied.

From the determination of complex functions ψ (7) and (8) follows that:

ρ
x
= ψ

x
ψ
x

∗,

ρ
k
= ψ

k
ψ
k

∗,
(11)

where asterisk (∗) is a symbol of complex conjugation.

After substitution of expressions (7) and (8) into relations (10), and after separation of

the real and imaginary parts, these relations form a system of two nonlinear real integral

equations relative to a pair of unknown real phase functions S
x
and S

k
.

Schrödinger theorem is the statement of the existence and uniqueness4 of a solution to

4 With the accuracy to within the arbitrary, time-dependent term.
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this system of nonlinear integral equations.

Let us name complex functions ψ
x
and ψ

k
, determined by relations (7) and (8), the wave

functions of Schrödinger or, to be more precise, the Fourier-doublet of Schrödinger

wave functions .

Under conjugation (9), existing between the components of Fourier-doublet, only one of

the two components of the doublet is enough to describe the Born ensemble: the second

one can be calculated by formula (9).

The Schrödinger theorem proving is unknown to the author; let us leave the burden of its

proving to mathematicians. Modern computational mathematics does not contain any

clear and simple procedure for constructing a phase pair
{
S
x
, S
k

}
by the Born ensemble{

ρ
x
, ρ
k

}
.

The statement, converse to the Schrödinger theorem, (we shall name it Weyl theorem),

is well known, and its proving can be found in any textbook on quantum mechanics: for

any Fourier -doublet of Schrödinger wave functions, the Heisenberg inequalities (6) are

satisfied5.

2.4 Ensemble Mass. Planck Postulate

The Born densities are continuous and differentiable time functions which allows to study

the dependence of any of the ensemble characteristics on time. Velocity of ensemble v is

an important characteristic of the one-particle ensemble:

v = ⟨x⟩• =
∫

x ∂t ρ
x
dV

x
, (12)

where ∂t ρ
x
is the partial time derivative of the Born density ρ

x
.

Velocity v is the ensemble characteristic. It makes no sense to speak about ”particle

velocity” – this notion has no representation in the apparatus of quantum mechanics.

Relation (12) allows us to formulate the postulate of existence of the Born ensemble mass:

For any of the Born ensemble there is a positive constant m, such one that

v =
1

m
⟨k⟩. (13)

The statement of quantity constancy is the hidden definition of the term ”uniform time”.

The physical content of equality (13) is the following: if we choose the clock (”uniform

time”) so that quantity m is the constant for some single one-particle ensemble, for any

5 Since student years, the author of this article was indignant by the very fact of Weyl derivability of

fundamental and empirically irrefutable uncertainty relation (6) from arbitrarily constructed complex-

valued apparatus of quantum mechanics. The scheme of construction of non-relativistic quantum me-

chanics, presented here, allows us to derive a mathematical fact of the existence of complex wave

function from the Heisenberg physical postulate : understanding of physics precedes the construction

of mathematical apparatus. We tend to use the same approach in the relativistic area.
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other one-particle ensemble its massm, which is determined by (13), will be also constant.

In fact, relation (13) contains three physical laws: the mass is scalar, the mass is positive,

the mass is constant. As well as velocity, mass is the ensemble characteristic. It makes

no sense to speak about the mass of a single particle: this concept does not have a

representation in the apparatus of quantum mechanics6.

In accordance with (13), the quantity, reciprocal to mass, has a dimension of diffusion

coefficient: [
1

m

]
= cm2/sec.

In Newtonian mechanics, as Ernst Mach already shown, mass is the characteristic of a

system of two particles (we mean the mass ratio in the two-particle system, i.e., the

dimensionless characteristic). To fix the numerical value of the mass of some particle

in classical mechanics, it is necessary to choose an arbitrary standard of mass: mass in

classical mechanics has independent dimension.

In quantum mechanics, mass characterizes a one-particle ensemble (there is no need to

create an ensemble of two-particle systems) and it does not have independent dimension

(there is no need for existence of mass standard).

Comparison of classical and quantum mass is possible in cases of making not very ac-

curate and not destructive measurements – for example, in the cloud chamber – which

allow to repeat the observations of the same copy of the system over time. During such

measurements, the classical particle mass mc can be determined with some limited ac-

curacy. The connection of classical quantity mc and ensemble characteristic m is fixed

by the following postulate (the correspondence principle or Planck’s postulate): there

is a universal constant ~ (Planck’s constant), such one that for any one-particle Born

ensemble, the following relation is satisfied

mc = m~. (14)

Planck’s constant appears only in Planck’s postulate7, and in other related statements.

It establishes the connection between not very accurate – in essence, not very accurate

6 Undoubtedly, this statement would have caused the protest of many physicists, not just those per-

sistent opponents of quantum mechanics, as Albert Einstein, Erwin Schrodinger and Louis de Broglie.

Preparation of an ensemble of identical one-particle systems requires confidence in the fact that we do

include the same particles into it – in particular, with the same masses. Description of actual procedures

for preparation of the ensemble, as well as description of procedures for comparing actual observations

that have a limited accuracy , with predictions of quantum mechanics, which apparatus presupposes

infinite accuracy of the measurement – it would be better to leave such description to the competent

physicists-experimenters. This description requires the explicit formulation of specific hypotheses about

the relationship of micro-and macro- world, which implies not only good knowledge of the capabilities

of measuring equipment, but also a philosophical mind of the appropriate writer.
7 Perhaps from the point of view of historical correctness, formulas (13) and (14) should be to associated

with the name of Louis de Broglie. But we have already used the term ”de Broglie postulate” before.

However, in theoretical physics, any ”I” is secondary; surnames can ”stir up the contents with randomness

obscuring the pure image of the truth”, as the religious philosopher Pavel Florensky once said. Good

works in any field, including theoretical physics, are similar to ancient Greek tragedies, ”they are not

written by whoever wishes to, or whenever he wishes to do it”, as the same Florensky said.
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– individual macro-measurements and ensemble characteristics which imply, in principle,

unlimited precision of measurements and calculations. The use of Planck’s constant in

the apparatus of quantum mechanics is not necessary.

Formula (13) does not allow to determine the mass of a one-particle ensemble in the

rest frame of the ensemble, in which ⟨k⟩ = 0 and v = 0. In this system, the mass of the

ensemble can be determined by the velocity of diffuse spreading of the ensemble in the co-

ordinate space. Perhaps this is the basic physical meaning of the non-relativistic concept

”one-particle ensemble mass”: the characteristic of the ensemble spreading velocity.

2.5 One-particle Ensemble Dynamics. Wave Equation

The Born ensemble as a dynamic system must be described by a pair of equations that

determine time derivatives of the Born densities by the Born densities known at this point

of time:

∂t ρ
x
= F

x

(
ρ
x
, ρ
k

)
,

∂t ρ
k
= F

k

(
ρ
x
, ρ
k

)
.

(15)

The right sides of equations (15) are non-linear in both of their functional arguments, and

each of them is nonlocal in the conjugated argument: function F
x
contains the integral

operator over the momentum space, function F
k
contains the integral operator over the

coordinate space.

Let us name relation (15) the Born dynamic equation, and functions F
x

and F
k

– the

Born generators. The overt form of the two Born generators is unknown for any of the

ensembles8.

For one-particle ensemble the following can be taken as a postulate:

F
k
= 0. (16)

The Born density of one-particle ensemble in the momentum space, according to (15)

and (16) is determined only by the initial conditions. Formula (16) contains both the

momentum conservation law of the ensemble, and the energy conservation law of the

ensemble.

Ignorance of the general forms of the Born generators F
x
and F

k
makes it impossible to

give the explicit real formulation of the equations of quantum mechanics in form (15)

– the mechanics, interpreted as ”the theory of dynamic systems in the Born ensembles

space”.

However, God, while creating the quantum world, was so forgiving that we do not need

to know the explicit form of the Born generators.

8 It is easy to write down the expressions for Born generators if we allow the use of phase functions S
x

and S
k
in the notation, – but the explicit form of dependence of the phase functions on the Born densities

is unknown.
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We can formulate the following postulate of autonomy and linearity (”Schrödinger pos-

tulate”):

The equation, which each of Fourier-doublet components of Schrödinger wave functions

obeys to (”Schrödinger equation” or ”wave equation”), is autonomous relative to the

second component of the doublet, linear and homogeneous.

This postulate, which should be called the postulate of the divine indulgence, has one

convenient consequence: it is sufficient to know only one Schrödinger equation – for ex-

ample, for the momentum component of Fourier-doublet; but, according to (9), we will

obtain the equation for the coordinate component through the Fourier transform of the

equation for momentum component.

The Schrödinger postulate has a purely mathematical formulation. It disguises its true

physical sense and creates anxiety. God is such a perfect mathematician, that, possibly,

He does not exploit math at all, and, anyway, He does not care about our human prob-

lems connected with the solution of nonlinear integral-differential dynamic Born equations

(15). Why did God need such indulgence to our limited mathematical abilities?

It would be great if there was a formal proof of the fact that ”Schrödinger postulate” is

a mathematical consequence of the Heisenberg postulate – i.e. ”Schrödinger Postulate”

is actually not a postulate, but a theorem. In this case, God had just no choice: he could

not create quantum ensembles with nonlinear Schrodinger equations. The author does

not know such proof.

If ”Schrödinger postulate” is independent of the Heisenberg postulate, God did have a

choice, and the choice made by Him, should be formulated not in the language of a fic-

titious mathematical object – Fourier-doublet of complex Schrödinger wave functions -

but in a more meaningful language , the language of Born generators F
x
and F

k
, so that

the statement of the linearity of Schrödinger equation would be a trivial consequence of

this formulation.

Leaving the problem of linearity of Schrödinger equation unclear up to the end in a ”deep

non-relativistic rear”, we face the question: should we expect the same divine indulgence

in the relativistic theory? Should equation for the wave functions be also linear in rela-

tivistic physics?

For the one-particle Born ensemble considered here, Schrödinger equation in momentum

space, as it is known, has the following form:

i ∂t ψ
k
=

k2

2m
ψ
k
. (17)

It is possible to create a certain illusion of the derivability of (17) based on non-consecutive

semi-classical ideas, but it would be better to consider wave equation (17) the quantum

postulate.

The Schrödinger equation in coordinate space arises from (17) by means of the Fourier

transform:

i ∂t ψ
x
= − 1

2m
∆ψ

x
, (18)
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where ∆ is the Laplace operator.

Of course, we do not have a necessity to solve equation (18): it is enough to solve (17)

and perform the Fourier transform for the obtained solution.

A definite and, in a sense, insuperable difficulty is connected with the need to satisfy

the initial conditions for equations (17) and (18). Keeping to the framework of rational

physical interpretation, we should specify the initial conditions in terms of the Born

pair

{
ρ
x
, ρ
k

}
. Transferring these Born conditions to the initial conditions for Schrödinger

wave functions, we should, at least at the initial moment of time, solve nonlinear integral

equations (9) which, in accordance with formulas (7) and (8), determine the phase pair{
S
x
, S
k

}
. Direct specifying of the initial conditions for Schrödinger’s Fourier-doublet of

the wave functions, apparently, should be considered impossible: we are preparing the

ensemble as a certain Born pair, and not as Schrödinger’s Fourier-doublet.

Therefore, the non-linear and nonlocal Born nature of quantummechanics, is seen through

Schrödinger’s linearity at least as the problem of the initial conditions9.

2.6 Born Pair and Schrodinger Fourier-doublet

for the Ensemble of Two-particle Systems

The ensemble of two-particle systems is prepared from two ensembles of one-particle

systems, which masses, m1 and m2, are known from the previous measurements made on

these one-particle ensembles. A single measurement of coordinates x (or, respectively,

of momentums k) gives the group of two radius vectors (x1, x2), or two momentums

(k1, k2). However, we can not associate a particular radius vector (or momentum) with

a particular particle, having number 1 or 2, and, respectively, mass m1 or m2: point

particles do not have any tags attached, and they are indistinguishable under individual

measurements. Therefore, we have to turn each coordinate (or momentum) measurement

into two possible descriptions of the measurement results, going over both of the possible

options of assigning numbers to particles. A number of N
x
t coordinate measurements made

over the ensemble at some instant of time t, turn into 2
N
x
t
sets of measurement descriptions.

For each of these sets, we determine a number ∆N
x
t – the number of measurements, at

which the availability of particles 1 and 2 is registered in a small but finite volume ∆V
x

of the six-dimensional configuration space in the vicinity of a point in this space, which

is specified by an ordered pair of three-dimensional radius vectors (x1, x2). Then we

can calculate the ratio ∆N
x
t/N

x
t and study the behavior of this ratio under an unlimited

increase in the number of measurements N
x
t.

If the following two conditions are satisfied:

(1) for some sets of measurement descriptions, this ratio with the growth of N
x
t changes

9 It would be appropriate to ask physicist-experimenters the following question: is it possible to prepare

the Born ensemble with a specified initial Schrödinger wave function – or, is it only the process of

preparing the ensemble with two specified initial Born densities that is physically implemented?
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chaotically: there is no limit for this ratio at N
x
t →∞;

(2) for other sets of measurement descriptions, such limit R
x

t exists, and it is the only

one, – the two particles in two-particle ensemble are named statistically distinguish-

able10, and limit R
x

t determines the Born density ρ
x
(x1, x2, t) in the six-dimensional

configuration space:

R
x

t = lim
N
x
t→∞

(
∆N

x
t

N
x
t

)
=

∫∫
∆V

x

ρ
x
(x1, x2, t)dV

x
1 dV

x
2. (19)

In formula (19), the integrals are taken over all the coordinates of the first particle and

all the coordinates of the second particle within the allocated six-dimensional volume

element in the configuration space.

Similar relation, with replacement of coordinates x with momentums k under satisfying

the conditions of statistical distinctiveness of the ensemble particles, determines the Born

density ρ
k
(k1, k2, t) in the six-dimensional momentum space of the two-particle ensemble:

R
k

t = lim
N
k
t→∞

∆N
k
t

N
k
t

 =

∫∫
∆V

k

ρ
k
(k1, k2, t)dV

k
1 dV

k
2. (20)

Two real, positive, normalized per unit Born densities, ρ
x
and ρ

k
, form the Born pair{

ρ
x
, ρ
k

}
, for which we can calculate two 3× 3-Heisenberg’s matrices H

1
ij, H

2
ij (5) for each

particle of the two-particle ensemble.

Heisenberg inequality (6) is postulated for each particle of the two-particle ensemble. For

the Born two-particle ensemble that satisfies the two inequalities (6), as well as for the

one-particle situation, we can formulate the Schrödinger theorem – the statement that

there is a pair of real phase functions S
x
(x1, x2, t) and S

k
(k1, k2, t), such one that the

Fourier-doublet components of Schrödinger wave functions ψ
x
(x1, x2, t) and ψ

k
(k1, k2, t),

determined by relations (7) and (8), are the Fourier images of each other:

ψ
x
=

1

(2π)3

∫∫
ψ
k
ei (k1·x1+k2·x2) dV

k
1 dV

k
2,

ψ
k
=

1

(2π)3

∫∫
ψ
x
e−i (k1·x1+k2·x2) dV

x
1 dV

x
2.

(21)

Integrals in (21) are taken over the entire six-dimensional space.

Wave functions ψ
x
of the two-particle ensemble, as it is known, satisfy the Schrödinger

equation:

i ∂t ψ
x
= − 1

2m1

∆
1
ψ
x
− 1

2m2

∆
2
ψ
x
+
α12

r12
ψ
x
, (22)

10These two conditions will knowingly be satisfied if, for example, a two-particle ensemble is made of

one-particle ensembles of different masses.
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where ∆
1
is the Laplacian by components of vector x1; ∆

2
is the Laplacian by components

of vector x2; r12 = |x2 − x1|; α12 is the coefficient of the coulomb interaction in the two-

particle system – a non-zero phenomenological constant characterizing the two-particle

ensemble11. In a sense, (22) should be regarded as the definition of this constant.

Considering successively three two-particle systems (1,2), (2,3), (3,1), formed by three

one-particle ensembles (1), (2), (3), any two of which are statistically distinguishable from

each other (for example, proton, electron and muon), we can formally attribute electrical

charges e1, e2, e3 to each ensemble, defining these charges as solutions to the system of

three algebraic equations:

e1 · e2 = α12,

e2 · e3 = α23,

e3 · e1 = α31.

(23)

It is obvious that the solution to system (23) exists if the following condition is satisfied:

α12 · α23 · α31 > 0. (24)

Condition (24) should be taken as a postulate (”Coulomb postulate”). The physical sense

of the Coulomb postulate is simple: we live in the world where electrical charges of the

same sign repel each other, and charges with opposite sign attract each other. One can

imagine the non-relativistic world with a different sign of inequality (24). (In such world,

in algebraic equations (23), which determine electric charges, there would appear a minus

sign: e1 · e2 = −α12, etc.). If we assume, following Albert Einstein that the only inter-

esting question of physics is: ”Did God have a choice?” the inequality (24), postulated

and having no justification within the non-relativistic scheme, shows that God did have

a choice. It is easy to see that the solution to system (23), under satisfying Coulomb

inequality (24), exists and it is unique (accurate within the arbitrary choice of the charge

sign for a single charged particle in the Universe).

But if the conditions of statistical distinguishability of two particles of the two-particle

ensemble are not satisfied, both the method of constructing the Born densities (there

is not one, but two different limits R
x

t and two different limits R
k

t) and the method of

connection of Fourier-doublet of Schrödinger wave functions with the Born densities, are

complicated.

Description of the two-particle ensemble of two statistically indistinguishable particles

requires the introduction of a spin as a phenomenological parameter which is explicitly

included into the mathematical description of the Born ensemble.

Further descending to particulars of non-relativistic quantum system is irrelevant here.

11Of all kinds of fundamental interactions, non-relativistic quantum mechanics allows to describe only

Coulomb electrostatic interaction as a non-relativistic rudiment of relativistic electromagnetic interac-

tion. Any other interactions, traditionally considered in quantum mechanics, either have a conventional,

model character (”quantum oscillator”) or are unlawful semi-relativistic approximations that destroy non-

relativistic logical harmony and conceptual clarity of non-relativistic theory – but improve the agreement

of predictions of the theory with high-precision experimental data of atomic and molecular spectroscopy.



228 Electronic Journal of Theoretical Physics 14, No. 37 (2018) 213–249

Relativistic quantum theory, the discussion of which is our objective, as well as classical

relativistic theory described in previous articles [1], [2], [3], does not contain particles at

the ”entry” to the theory. The particles should appear at the ”exit” as an accurate de-

scription of some stationary states, or as an approximate description of some transitional

non-stationary states. Spin can not remain phenomenological input parameter, but must

also appear at the output of the theory.

3 Principles and Problems of Transition to Quantum

Relativistic Theory

What can we decidedly borrow from non-relativistic quantum system to transfer to rela-

tivistic quantum theory?

• De Broglie Postulate , which in the relativistic formulation states that four-

dimensional momentum space {kν} exists along with four-dimensional coordinate

space {xν}. These two spaces form a dyad {xν |kν}. The semi-components of this

dyad are complementary to each other by Niels Bohr: the description of the ensemble

of fields is possible either in {xν | or in |kν}.
• Born postulate of the existence of a relativistic analogue of the Born densities.

• Relativistic analogues of the Heisenberg postulate and the Schrödinger theo-

rem of the existence of Fourier doublets of relativistic wave functions (Dirac spinors).

• Perhaps, some analogue of the linearity postulate of relativistic wave equations.

What can we transfer to the quantum relativistic theory from the classical three-sector

field theory with continuum currents, which has been presented in the previous articles

of this series?

• The idea of existence of the three independent sectors of physics – singlet, triplet

and octuplet.

• The idea of dyadic nature of each sector in the form of a dyad current—potential.

Dyad semi-components in the quantum version of the theory should be considered

as complementary to each other by Niels Bohr: description of the ensemble of fields

in each sector is possible either in terms of current or in terms of potential.

• The idea of the Riemann geometry of four-dimensional spatial continuum {xν |. Con-
struction of the theory of particles, which have a rest mass, as intrinsic states of

the theory, is apparently impossible without considering the Riemann curvature of

space12.

Transferring of the concept of Riemann geometry of coordinate 4-continuum {xν | to
quantum theory immediately gives rise to a number of painful questions, the correct

12 ”Does gravitational field play any role in the matter structure and should a continuum inside the

atomic nucleus be considered perceptibly non-Euclidean?” – this is the rhetorical question which Albert

Einstein asked himself and the readers of ”Nature” during the epoch of the grandiose triumph of general

relativity theory [4]. But he never turned to this subject any more. Neither Yukawa’s meson, no isospin,

no neutrino made Einstein recognizes the existence of fields other than gravitational or electromagnetic.
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answers to which we just have to guess13.

• What should be the geometry of the space of momentums |kν} that are the second

semi-component of spatial-momentum dyad {xν |kν}, be like?

• Should we make similar ”non-Minkowski” demands to the geometry of multidimen-

sional spaces of currents and potentials?

• Should we consider the metric tensor of the four-dimensional coordinate space {xν |
”attached”” to each unique, irreproducible field realization or is it appropriate to

consider it a part of the description of the ensemble of field realizations?14

• If we accept, following Einstein, the minimalist” interpretation of physical geometry:

”Ricci tensor depends linearly on the tensor of field energy-momentum”, how should

the right-hand sides of Einstein’s equations be constructed? Should there be present

a certain procedure of the field variables (currents or potentials) integration? How

can a physical quantity, the integration of which by field variables generates the

energy-momentum tensor, be constructed from Dirac spinors?

• How should Fourier-transform procedure, necessary for the introduction of Dirac

spinors by formulas that have to be a relativistic analogue of formulas (9) and (10)

of the non-relativistic quantum scheme, be formulated in the curved Riemannian

space?

Leaving aside for some time these difficult questions, we can ask ourselves a more simple

question – what can we transfer to the continuum relativistic quantum theory from the

version of quantum field theory (but without its point fermions) which was developed in

the twentieth century? Undoubtedly, there are two ”transportable” ideas:

• The idea of the Dirac spinors as the principal instrument of the mathematical de-

scription of physical reality.

• The Dirac equation – as some prototype, as a heuristic base for the construction of

equations of the new theory. For this theory, the existing Dirac equation should be an

approximate consequence of the theory equations eventuating after some procedure

of the approximate integration by field variables.

4 Dirac Space and Dirac Vectors in Quantum Electrodynamics

4.1 Born Fluxes

In quantum electrodynamics, we are dealing with two independent dyads: ”space / mo-

mentum” – {xν |kν}, and ”currents / potentials” – {Jν |Aν}. Combining semi-components

of these dyads, we get 4 sets of measurement procedures: ⟨x|J⟩, ⟨x|A⟩, ⟨k|J⟩, ⟨k|A⟩. In

this notation, the Lorentz indices are omitted, and the notation itself has the following

13Hardly can these answers allow a direct empirical test.
14 From philosophical point of view, we have to put up with the multiplicity of field realizations, but

the space (and momentum), four-dimensional capacitance for these realizations exists, of course, only

in a single copy. In this sense, it is not very easy to understand what those physicists who speak of

”quantization of gravitation” mean.
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meaning:

⟨x|J⟩ – is the measurement procedure in the space-time continuum and in the space of

currents;

⟨x|A⟩ – is the measurement procedure in the space-time continuum and in the space of

potentials;

⟨k|J⟩ – is the measurement procedure in the momentum continuum and in the space of

currents;

⟨k|A⟩ – is the measurement procedure in the momentum continuum and in the space of

potentials.15

It is convenient to construct the following system of dyadic notation. We will call the

space-momentum dyad {x|k} the first dyad and in the bracketed notations of measure-

ment procedures we will put the information on the element of the first dyad into the

left side, before the dividing line. The current-potential dyad will be called the second

dyad, and information on the element of the second dyad will be presented to the right

side from the dividing line in the bracket symbol of the measuring procedure. For each

dyad, instead of alphabetic characters it is convenient to use dyadic index which takes

two possible values: a = 1 or a = 2.

Index 1 corresponds to the first semi-component of the dyad (coordinates x in dyad

{x|k}, current J is in dyad {J|A}) , index 2 corresponds to the second semi-component

of the dyad (momentum k in dyad {x|k}, potential A is in dyad {J|A}). Notation ⟨1|2⟩
can be used with these dyadic indices to describe, for example, measuring procedure

⟨x|A⟩. If some physical quantity q is determined by measurement procedure of type ⟨a|b⟩
(a, b = 1or 2), this information can be expressed by using the subscript dyadic indices:

q
ab
.16

Let us assume that in space-time continuum {x| there is selected some infinite non-closed

oriented three-dimensional hyper-surface σ with time-like unit normal vector nµ at each

point (nµnµ = +1, n0 > 0). This surface should contain space-like infinity17.

Let us suppose that at sufficiently large number of points of this hyper-surface, there

15We can hardly present any explicit descriptions of these procedures, even in Einstein’s genre of his

favorite ”mental experiments” – eventually, measurements inside the electron must be considered. In

quantum version of physics of currents and potentials, something, apparently, has to be left unfinished,

just like Leonardo left unfinished the head of Christ in his painting ”The Last Supper” in Milan Dominican

convent of Santa Maria delle Grazie, believing, according to Giorgio Vasari, that ”he would not be able

to express in it all the heavenly divinity, required by the image of Christ; but Leonardo gave splendor

and simplicity to apostles’ heads”. A theoretical physicist, as well as an artist, must strive for ”splendor

and simplicity” in something that allows to describe itself, not daring to claim to describe the ”heavenly

divinity”.
16The right-hand subscripts and superscripts are traditionally used as Lorentz indices; over-letter super-

scripts are used in [2] and [3] as Yang-Mills indices: for the dyadic indices there is a space left under the

letter denoting a physical quantity.
17 In non-relativistic situation, we would describe it in more simple terms, for example, – ”let us assume

that at some instant of time t measurements have been made over the entire infinite three-dimensional

space”.
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have been made measurements in the current space. Let the total number of all mea-

surements be equal to N
11
. Let us suppose that ∆N

11
is a number of such measurements

that something is found in a small but finite 3-volume ∆σ of surface σ in the vicinity of

some point x and meanwhile, in a small but finite 4-volume ∆Ω of space of currents in

the vicinity of some point of this space.

We state that there is a ratio limit ∆N
11
/N
11

at N
11
→ ∞, and this limit can be expressed

as an integral of a certain quantity ξ
11
:

lim
N
11
→∞

(
∆N

11

N
11

)
=

∫
∆σ

∫
∆Ω

ξ
11
dσdΩ. (25)

In formula (25) dσ is a Lorentz-invariant scalar element of 3-volume of hyper surface σ:

dσν = nνdσ; dσ =
√

dσν dσν ,

and dΩ is the element of 4-volume in the current space. The integral in (25) is seven-

fold. Statement (25) is the relativistic analogue of the Born postulate (1). Quantity ξ
11

can be called ⟨1|1⟩-Born density. This density is determined on an arbitrarily chosen

hyper-surface σ. It should be assumed that the description of physical phenomena does

not depend on the choice of σ, and locally does not depend on local normal vector nν ,

therefore, there is a 4-vector ρ
11

ν , such one that

ξ
11
= ρ

11

ν nν . (26)

4-vector ρ
11

ν is a field in mathematical sense, i.e. depends on point x, but does not

dependent on vector nν . But Born density ξ
11

itself is not a field: it depends not only

on x, but also on nν . Let us name 4-vector ρ
11

ν ”the Born flux” in representation ⟨1|1⟩.
This vector depends on two 4-vectors xν and Jν , i.e. is the function of a point in the

eight-dimensional measurement space (the Dirac space).

In accordance with the above, the four variants of measurement procedures ⟨a|b⟩ (a, b =

1or 2) generate four Born fluxes ρ
ab

ν , each of which is determined in its own version of the

eight-dimensional Dirac space.

Consequently, in relativistic quantum electrodynamics, the Born postulate is

a statement of the existence of the four Born fluxes ρ
ab

ν .18 Relativistic Born

ensemble is the quadruplet of fluxes: sixteen functions liable to determination in the

four inter-related realizations of the eight-dimensional Dirac space instead of two non-

relativistic scalar Born densities in the two three-dimensional spaces – coordinate and

momentum... The radical increase in a number of unknown functions and a number of

their arguments...

18 In some situations, this statement is too optimistic and requires clarification, for example, in the

situation of collision of two electrons we can not distinguish in which of the two electrons the given point

is located. In this case there is more than one limit (25). But, undoubtedly, it is reasonable to avoid

discussing such clarifications at such an early phase of the theory construction.
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4.2 Dirac Vectors

To move forward on the way projected in the non-relativistic scheme, we have to turn

a set of real Born fluxes into a set of complex wave functions. To do this, we have to

formulate some relativistic analogue of the non-relativistic Schrödinger theorem (see p.

2.3). In order to do it, in accordance with formulas (7) and (8), we must learn to take

the square root of 4-vector Born flux. This problem could be considered unsolvable if it

had not been solved by P.A.M. Dirac already in 192819.

Following Dirac, we state that there is a Lorentz vector in the form of a set of four 4× 4

matrices Γν
αβ (ν is Lorentz index, α and β are the matrix indices α, β = 1, 4) which

allows to associate the four complex four-component wave functions ψν
αβ with the four

real 4- vectors of Born fluxes ρναβ so that

ψ∗
α

ab

Γν
αβ ψβ

ab

= ρ
ab

ν . (27)

In the formula (27) the asterisk (*) is a sign of complex conjugation, α and β are the

matrix indices (summation from 1 to 4 is made for repeated matrix indices); a and b are

dyadic indices that do not have a vector character (dyadic indices are just the tags of the

Dirac space, with repetition of dyadic indices, summation for them is not made).

Four components ψ∗
α

ab

at fixed dyadic indices a and b are called Dirac spinor in repre-

sentation ⟨a|b⟩, and thus the indices α and β in matrices Γν
αβ can be named not matrix,

but spinor ones. However, instead of the established resounding term ”spinor” we will

use, albeit awkward, the term ”Dirac vector” and we will call the indices α and β ”Dirac

vector indices”. Classical relativistic physics [1], [2], [3] is formulated in terms of Lorentz

(and Yang-Mills) vectors while quantum relativistic physics in terms of Dirac vectors.

19Perhaps, modern history of science underestimates this part of P.Diracs biography. This achievement,

in a sense, puts this physicist, and, perhaps, only him alone, on the level with Isaac Newton: Dirac

had to invent a new mathematical apparatus (spinors) in order to express the new physics – just like

Isaac Newton had to invent the derivative and integral to express the laws of mechanics discovered by

him. Neither Maxwell nor Schrödinger had to invent the partial differential equations – they had already

existed. And even Einstein did not have to invent the Riemann geometry and tensor analysis: they were

in the depths of mathematics as a finished product. Werner Heisenberg re-invented matrices, but this

invention reflected not only his brilliant abilities, but also insufficient level of his personal mathematical

training: matrices had already existed in mathematics.
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Matrices Γν
αβ in (27) have the form:

Γ0
αβ = δαβ,

Γ̂1 =



0 1 0 0

1 0 0 0

0 0 0 −1

0 0 −1 0


,

Γ̂2 =



0 −i 0 0

i 0 0 0

0 0 0 i

0 0 −i 0


,

Γ̂3 =



1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 1


.

(28)

Usually, in the notation of Dirac algebraic relations (27), instead of matrices (28), Dirac

matrices γ̂ν are used, such ones that:

Γ̂ν = γ̂0γ̂ν . (29)

In some loose way it is possible to express the essence of equalities (27) as follows: at

extracting the square root of a real Lorentz vector we get a complex Dirac vector.

Relations (27) are the relativistic version of relations (11) and they do not determine

Dirac vector ψα on their own. It is obvious that the four complex functions ψα can not

be determined by four real equations (27). To determine ψα, besides (27), we need a

relativistic version of the Fourier-relation (9), (10).

4.3 Relativistic Fourier-transform

The Fourier transform in non-relativistic quantum theory (9) connects the two compo-

nents of Schrödinger Fourier-doublet, each of which is determined in one semi-component

of a non-relativistic dyad {x|k}. While constructing the relativistic Fourier transform

(it will be denoted with symbol RFT), we have to take into account that Dirac vectors

ψα have two dyadic indices. For mathematical representation of Fourier-procedures with

this ”doubling of dyadic indices”, we will introduce the negation symbol of dyadic index
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a as follows:

a =

 2, if a = 1,

1, if a = 2.
(30)

The transition from ψ
ab

to ψ
ab

will be called a dyadic conjugation.

Formal notation RFT, which replaces the formal non-relativistic notation (9), must look

as follows:

ψα
ab

RFT
= ψα

ab

. (31)

Relation (31) means that ψ
ab

is a Fourier-transform of dyad-conjugated vector ψ
ab

. If we

manage to give a clear mathematical sense to formal symbol RFT, the integral equa-

tion (31) together with algebraic Dirac equations (27), will allow to explicitly determine

Dirac vectors ψα
ab

by the observable Born fluxes ρ
ab

ν . It is obvious that in quantum elec-

trodynamics, we get not one Fourier-doublet of Schrödinger wave function, but two inde-

pendent Fourier-doublets of Dirac vectors: Fourier-doublet, diagonal by dyadic indices,

and Fourier-doublet, non-diagonal by dyadic indices. Accordingly, in contrast to non-

relativistic theory, all information on the quantum-electro-dynamic states is contained

not in one half of the Fourier-doublet, but in two independent halves of the two inde-

pendent Fourier-doublets of the Dirac vectors, for example, ψα
11

and ψα
12
. Accordingly,

mathematics of quantum electrodynamics requires construction of two independent com-

plex wave equations, unlike mathematics of non-relativistic quantum mechanics which

requires one independent complex wave equation.

Constructing the relativistic analogue of non-relativistic Fourier-transform (10), we will

open a formal notation RFT (31) as follows:

ψα
ab

=
1

(2π)7/2

∫∫
eiϕψα

ab

dσ
a
dΩ

b
,

ψα
ab

=
1

(2π)7/2

∫∫
e−iϕψα

ab
dσ
a
dΩ

b
.

(32)

Integrals in (32) are taken over the entire three-dimensional hyper-surface σ
x
in the co-

ordinate continuum (or, correspondingly, σ
k
in the momentum continuum) – this is a

three-fold integral; as well as over the entire four-dimensional current continuum J (or,

correspondingly, continuum of potentials A) – this is a four-fold integral. The degree of

the Fourier multiplier
√
2π corresponds to seven-fold integration in (32).

Symbol ϕ in (32) denotes relativistic Fourier-phase, which should be constructed so that

it was a reasonable relativistic generalization of non-relativistic Fourier phase in (10).

This non-relativistic Fourier phase is the inner product x ·k of the two semi-components

of non-relativistic space-momentum dyad {x|k}.
Regardless of the particular type of phase ϕ, RFT (32) contains a serious vulnerability:

integrals in (32) are taken over arbitrarily chosen hyper-surfaces σ
x
and σ

k
. In contrast to
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non-relativistic situation, we can not connect these two hyper-surfaces in two different

four-dimensional continuums. In non-relativistic quantum mechanics, for example, we

integrated over the entire 3-space of momentums at the same instant of time t at

which the wave function in the coordinate space was determined. We can not transfer this

construction of absolute time to relativistic scheme. Of course, we have to suppose that

all the measuring equipment, by means of which we detect something in the space of

currents, potentials, coordinates and momentums, is fixed in some locally Galilean frame

of reference in some vicinity of each point of the space-time continuum, but the author

has to admit that he does not know how to derive a mathematically faultless coupling

between σ
x
and σ

k
from this physically faultless statements. We will use the above cited

”rule of Leonardo” and will not detail this important part of relativistic picture.

4.4 Relativistic Fourier-phase

Non-relativistic formula for the Fourier phase ϕ = x · k allows to suggests that the rel-

ativistic Fourier-phase should be a linear combination of two scalar products of dyadic

semi-components of the both quantum-electro-dynamical dyads {x|k} and {J|A}. How-

ever, these two scalar products enter into the phase with different weight:

ψ = xµkµ + αJµAµ, (33)

where α is some phenomenological constant of quantum electrodynamics, which we will

unhesitatingly identify with the constant of fine structure.

Here it is appropriate to remind the reader that in the theory appears a fundamental

length r0 [1], which we accept as a length unit20. The velocity of light is also accepted

as a unit. The quantity of electron charge is accepted as a unit. Accordingly, all the

quantities appearing in the theory are dimensionless.

As it has been noted in [1], the relativistic theory of matter can not be constructed without

considering the Riemann curvature of space. It means that one more dimensionless

constant, proportional to gravitational constant G, appears in the theory. In another

way this can be expressed as follows: the theory must include the Planck length rp
and, correspondingly, the dimensionless constant r0/rp. This constant and constant α,

appearing in (33), should of course, be connected with each other. However, at present,

embryonic stage of the theory construction, this connection, as well as the other important

details of the picture, remains non-detailed.

If the expression of relativistic Fourier-phase, introduced by formula (33) is correct, the

true physical meanings of the constant of fine structure α is that this quantity is a measure

of mixing σ-variables and Ω-variables, the measure of their relative weight.

In the world with α << 1, the ”observer” and his ”equipment” are often found in an

empty space, the space without currents. In such world, the concept of free point particles

with the interpretation of ”interaction” as collision of particles (not without difficulties

20Constant r0 was estimated in [2] r0 ∝ 10−26 cm.
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and divergences) is useful.

In the world with α >> 1, the ”observer”21 and his ”equipment” are often found in

spaces occupied by currents: the subject of study would rather be the properties and

movement of ”voids”, ”bubbles” which are not occupied by currents. Observers like us

feel comfortable only in the world with α << 1. But we do not know the principle by

which God fixes a specific value α ∼= 1
/
137.

4.5 Fourier-phase in the Riemannian Space

The two terms in relativistic Fourier-phase (33) have different geometrical importance.

The second term, proportional to scalar product JνAν , does not change its type in the

curved Riemannian space – only for lowering/raising of Lorentz indices there should be

used the components of non-Galilean metric tensor gµν , determined locally, at the same

point of the space-time Riemann continuum, where the measurements in J-space or A-

space were made.

However, the first term in (33) makes no sense at all in the Riemann continuum: coor-

dinates xµ do not form a vector (vectors are only coordinate differentials). With some

psychological effort, we probably have to say the same about components kµ: they do not

form a vector. It is hard to imagine how x and k form a dyad of equal semi-components

if space curvature k does not correspond to the Riemann curvature of 4- continuum x.

However, it is even more difficult to imagine a curved momentum space: in modern the-

oretical physics, apparently, there is no idea that can suggest how to curve momentum

continuum.

Let us rewrite expression (33) in the form:

ϕ = η + αJµAµ, (34)

where η
(PE)
= xµkµ. (35)

Symbolic notation (35) means that this equality is valid only within the framework of

pseudo-Euclidean geometry of four-dimensional continuums x and k.

How should we rearrange the expression for phase η in the Riemann continuum? The

expression for η which we suggest below (36), is rather a gesture of despair than a display

of physical intuition.

Let us identify space x and space k. Of course, we can not identify the measurement

procedure in these spaces – they are inter-complementary by Niels Bohr. But let us try

to interpret xν and kν as coordinates of two points in one four-dimensional continuum.

As part of this (which is not easy to imagine, and which is impossible to accept), we can

choose some arbitrary point O as the origin (common for x and k) and determine the

lengths of the three geodesic lines Cox, Cok, Cxk:

21 In such world there hardly can be ”observers” like us. Cosmologist A.L. Zel’manov once said that

we are the witnesses of the processes of a certain type, because other processes take place

without witnesses.
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• sox =
∫
Cox

√
gµνdx

µdxν – the length of geodesic line Cox connecting point O with

point x;

• sok =
∫
Cok

√
gµνdx

µdxν – the length of geodesic line Cok connecting point O with

point k;

• sxk =
∫
Cxk

√
gµνdx

µdxν – the length of geodesic line Cxk connecting point x with point

k.

Knowing the lengths of the three geodesic lines, we can construct phase η as follows:

η =
1

2

(
s2ox + s2ok − s2xk

)
. (36)

Expression (36)22 coincides with (35) for the pseudo-Euclidean geometry with using the

Minkowski coordinates; expression (36) will be also valid in arbitrary curvilinear coordi-

nates introduced in the pseudo-Euclidean continuum, and, finally, we can postulate (36)

for the Riemann continuum, if we simultaneously require the metric tensor to obey the

Einstein equations (so far disregarding the fact that we have not been able to construct

a quantum-electro-dynamic energy-momentum tensor and, therefore, can not even enter

the explicit form of the Einstein equations).

The idea of identification of spaces x and k, is, undoubtedly, disgusting, and evidently

contradicts the initial interpretation of x and k as ”semi-components of dyad {x|k} com-

plementary by Bohr”. Perhaps, among the readers of the article there will be found a

mathematician who, in contrast to the author, knows the subject of the Fourier-transform

in a larger scope than the classical book by Ian Sneddon can provide [5]. The reader,

who is able to provide a more convincing mathematical interpretation for phase η in the

Riemann continuum. But we, due to the lack of an alternative, will consider formula (36)

acceptable for relativistic quantum theory.

4.6 Some Concluding Remarks on Dirac Mathematics

of Quantum Electrodynamics

• By analogy with the non-relativistic quantum theory, we can assert that the system

of equations (27) and (32) that determines Dirac vectors by Born fluxes, is solvable

not for any arbitrary specified quadruple of Born fluxes, but only for such quadruples

that satisfy some a priori solvability conditions. These conditions are the relativistic

generalization of non-relativistic Heisenberg inequalities (6). Taking into account

the fact that in the relativistic scheme there are two independent Fourier-doublets

of the Dirac vectors, there must be more relativistic solvability conditions than in

the non-relativistic scheme. And if we take into account the Riemann complexity

of the form of the relativistic Fourier-phase (36), the very possibility of entering the

explicit form of relativistic version of the Heisenberg postulate (6) becomes unobvi-

22The reader will be right if he suspects a school ”cosine theorem” in (36).
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ous23.

The very fact of existence of the Fourier-coupling (32) between Dirac vectors in the

dyadically-coupled representations (the coupling between ψ
ab
and ψ

ab

) means, in partic-

ular, that there is no quantum-electro-dynamic state which could be interpreted as

a free electromagnetic field, i.e., the ensemble of photons. If wave function ψ
22

is not

identically zero, ψ
11
can not be identically zero either: if there are photons, somewhere

there are sources of these photons. This is quite natural, but also paradoxical result

which is poorly consistent with the usual research methods in theoretical physics.

• In classical electrodynamics of continual currents [1], the a priori condition of space-

likeliness is imposed on currents Jν :

JνJν ≤ 0. (37)

Hardly can this condition be appropriate in quantum electrodynamics as a hard a

priori constraint of the Dirac space geometry. However, condition (37) will actu-

ally control the arrangement of quantum-electrodynamic states, if Dirac vector ψα
11

contains a multiplier of the form exp(−λJνJν) with λ > 0. Under satisfying this

condition, components ψα
11

will decrease exponentially in the area of positive values

of the pseudo-Euclidean square of the current module. Availability of such exponen-

tial multiplier can be provided if we interpret the current equation of the classical

version of the theory [1]:

Jν +Aν = 0,

as operator relation:

Ĵ ν + Â ν = 0, (38)

and suggest that

Â ν =
∂

∂Jν
in J-representation. (39)

The equation for Dirac vector ψα
11

follows from (31) and (39) :

∂ψα
11

∂Jν
+ Jνψα

11
= 0

with solution

ψα
11

= Cα(x)e
− 1

2
JνJν , (40)

where Cα(x) is the function that depends on space coordinates.

Undoubtedly, relation (40) seems too simple and poor to contain the whole quantum

electrodynamics. Besides, operator relation (39) is incompatible with the form of

23The author uses these remarks to disguise his mathematical weakness, his inability to construct a

relativistic analogue of Weyl theorem. Undoubtedly, among the readers of this article there may be

found a more successful mathematician able to formulate Weyl theorem for quantum electro-dynamics.
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Fourier-phase (33): the lack of imaginary unit i in (39) requires its availability before

the second term in (33). This, in its turn, changes the interpretation of equations

(32): RTF becomes the Fourier transform only within the first dyad {x|k}.
The situation becomes even more complicated if we remember that in the classical

version of electrodynamics of continual currents [1], constructed here, there is one

more current module restriction:

JνJν ≥ −j20, (41)

where j0 is some (unknown) fundamental constant.

Representation of restriction (41) with use of the corresponding exponential multi-

plier in Dirac vector ψα requires a more complicated expression for potential operator

Â ν than (39), and, therefore, a more complicated expressions for Fourier phase than

(33).

By the end of this observation we find ourselves in front of the ruins of the newly

constructed quantum relativistic scheme: it is badly compared with classical elec-

trodynamics of continuous currents [1].

What can be considered reliable in the constructed scheme?

Probably, the concept of the Dirac space and Dirac vectors itself, connected with the

Born fluxes by equations (27) and with each other – by relativistic Fourier transform

(32) with non-specified relativistic Fourier phase ϕ.

Probably, the idea of partition of Fourier phase into two terms, each of which is con-

nected with one dyad, is reliable. But neither of the terms in the notation of specific

expression for phase ϕ (34) is reliable. The first term in form (36) is doubtful because

of rather arbitrary method of accounting the Riemann curvature. The second term

does not allow to account for current module restrictions that we substantiated in

the classical version of the theory [1].

• The Dirac equation in its usual form:

i γµαβ ∂µψβ = mψα + eAµ γ
µ
αβ ψβ, (42)

hardly can be directly applied to the constructed here relativistic quantum scheme.

It contains particle mass m and particle charge e, i.e. the integral characteristics of

some stationary quantum state, while their appearance in local relation (42) seems

irrelevant. Besides, this equation does not contain any dyadic indices and does not

allow determining which of the two independent Dirac vectors it could be related

with.

Instead of mass m in the first term on the right side of (42) there should appear a

multiplier connected with the energy-momentum operator T̂ µν .
24

Its Lorentz indices can be ”extinguished” by the product of Dirac matrices γµβγ γ
ν
γδ.

Free Dirac indices of this product can be extinguished by the ”plate” of two Dirac

vectors ψ∗
β . . . ψδ. To keep some memory of the ”linearity and autonomy” of the

24We will afford to neglect the fact that we do not have an expression for this operator yet.



240 Electronic Journal of Theoretical Physics 14, No. 37 (2018) 213–249

wave equations, we have to assume that this non-linear ”plate” is formed of the

vector which is dyad-conjugated by one of the dyadic indices to vector ψ appearing

in the equation. In addition, this multiplier with bilinear ”plate” must imply the

integration by the semi-component of the dyad {current|potential}, which is coupled

with the semi-component entering the argument of vector ψ. As a result, the Dirac

equation can be re-written in the following form:

i γµαβ ∂µψβ
1a

= ψα
1a

(∫
ψ∗
β

1a

γµβγ T̂ µν γ
ν
γδ ψδ

1a
dΩ

a

)
+ . . . . (43)

In equation (43) the last term on the right side of (42), in which we have to do

similar manipulations to remove the symbol of electric charge e from the equation

notation, is not written out. The coefficient with ψα
1a

on the right side of (43) is the

coordinate function x. Therefore, relation (43) is linear by ψα
1a
, but integrally the

quantum state is described nonlinearly, since the coefficient with ψα
1a

is functionally

dependent on the second Dirac vector.

Instead of charge e in the last term on the right side of (42), we probably have

to write the current operator Ĵν . Its Lorentz index can be balanced by the Dirac

matrix γνγδ. Free Dirac indices of this matrix can be balanced by the plate of the two

Dirac vectors. To ensure the ”linearity” of the Dirac equation, we should provide

for a transition to a coupled dyadic index and integration by the corresponding

semi-component of the dyad {current|potential}. As a result, we form up the Dirac

equation (42) as follows:

i γµαβ∂µψβ
1a

= ψα
1a

(∫
ψ∗
β

1a

γµβγT̂ µν γ
ν
γδψδ

1a
dΩ

a

)
+

(
Âµγ

µ
αβψβ

1a

)(∫
ψ∗
γ

1a

Ĵνγ
ν
γδψδ

1a
dΩ

a

)
. (44)

We have fixed in (44) the first dyadic index equal to 1 taking into consideration the

form of the left-side of equation (44), which contains the operator of differentiation

by xµ. Under transition to the momentum representation on the left side of (44),

we should write γµαβ kµψβ
2a

.

Equation (44) is linear relative to the Dirac vector ψ
1a
, but in general the problem of

quantum electrodynamics is non-linear and even considerably nonlinear (does not

allow linearization). By cubic nonlinearities (44), it resembles a ”fundamental field

equation” investigated in the later works of Werner Heisenberg [6]. But the equation

of W. Heisenberg did not contain any integration operations. Unlike Albert Einstein,

who worked on the classical unified field theory, Werner Heisenberg was looking for

a quantum version of the field theory, but his thinking, as well as Albert Einstein’s

thinking, was clearly monadic: he believed that the field must be described by

one wave function (Weyl two-component spinor or Dirac four-component spinor).

Our description of quantum electrodynamics requires the use of two independent

Dirac vectors, while multi-sector quantum relativistic states, located not only in the

singlet (Maxwellian) sector, but also in the triplet and octuplet Yang-Mills sectors
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of physics, require even a larger set of the Dirac vectors.

If we fix the free dyadic index a in (44) supposing that a = 2, the operator of

potential Âµ on the right side of (44) will just be reduced to a simple multiplication

by potential Aµ.

If we assume that dyadic index in (44) can take on both values a = 1 and a =

2, equations (44) form a complete system of two (vector) Dirac equations for two

independent Dirac vectors ψ
11

and ψ
12
. But in this case there arises a question: where

and how should Maxwell equations show their worth? Maxwellian ”trace” should

certainly manifest itself in the formation of operator T̂µν which contains the quantum

version of electromagnetic field tensor – but is it sufficient for (44) to be accepted as

a complete description of quantum electrodynamics?

Of course, all these hard doubts under the construction of quantum electrodynamics

equations are generated by the fact that we are trying to construct equations of the

theory per se with the lack of any general guiding physical principle. In classical

physics, this principle is the principle of least action, and the accompanying aesthetic

requirements of simplicity and symmetry claimed to the Lagrangian. Apparently,

there is no such principle in the relativistic quantum theory, and the equations of

the theory should be just discerned25.

• If in the classical expression for electromagnetic field tensor

Fµν = ∂µ Aν − ∂ν Aµ,

we make a change of ∂µ → i k̂µ, but will interpret potential Aµ, as well as momentum

kµ as an operator acting on the Dirac vectors, field operator F̂µν can be presented

in the form:

F̂µν = i
(
k̂µ Âν − k̂ν Âµ

)
. (45)

Operators k̂µ and Âν act on different groups of the Dirac vector arguments and must

commute.

If, within the same approach, we treat the Maxwell equations as operator relations:

∂µF
µν = 4π Jν → i k̂µF̂

µν = 4π Ĵ ν ,

and accept that in A-representation Ĵ ν =
∂

∂ Aν

, instead of Maxwell equations, we

25The reader must have noticed that we tacitly ignore the Feynman approach to the derivation of

relations of quantum physics. This approach is based on the integration by all the field realizations of

exponent of the classical action functional (and in the non-relativistic situation – on integrating by all the

classical trajectories of the particles). Such course of actions creates the illusion of reality of existence of

classical fields as both continuous and differentiable time and place functions (but in the non-relativistic

problem – the illusion of existence of smooth trajectories of point particles). Support of such illusion

seems unacceptable from the philosophical point of view – despite the technical success of the Feynman

approach. Besides, some mathematicians believe that in the pseudo-Euclidean continuum of relativistic

theory it is absolutely impossible to give any sense to Feynman integrals by field realizations.
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can enter the equation for the second Dirac vector:

γναβ
∂

∂Aν

(
ψβ
22

)
= − 1

4π
kµk

µAνγ
ν
αβψβ

22

. (46)

In notation (46) the operator relation is accepted:

k̂µ Â
µ = 0, (47)

which replaces the classical condition imposed on the divergence of potential Aν .

Operator relation (47) looks rather strange and, of course, makes sense only under

the integral sign by σ- and Ω-variables in the ”plates” of ψ-vectors.

Equation (46) should be taken as postulated, without any reference to equation

(47). We will interpret the classical expression for electrodynamic energy-momentum

tensor Tµν [1] as an operator acting on the Dirac vectors:

Tµν → T̂ µν = T̂ µν
cur + T̂ µν

f ;

T̂ µν
cur = Ĵ µĴ ν − 1

2
gµν ĴλĴ

λ;

T̂ µν
f =

1

2

(
−F̂ µλF̂ ν

λ +
1

4
gµνF̂ ληF̂λη

)
.

(48)

Relation (48) implies that the electrodynamic energy-momentum operator consists of

the energy-momentum operator of currents T̂ µν
cur and the energy-momentum operator

of free field T̂ µν
f .

Supposing that in (44) a = 2, we transform (44) into the equation for vector ψα
12
,

which coefficients on the right side of (44) depend on the integrals of current space

containing the operators acting on vector ψα
11

under the integral sign. This vector

is a relativistic Fourier-transform of vector ψα
22
. Vector ψα

22
obeys the linear and

autonomous equation (46).

While constructing the right side of the Einstein gravitational equations, we have to

use operator (48) instead of the classical energy-momentum tensor, perhaps, in the

following form:

Tµν =

∫
ψ∗
α

11

T̂ µν
curψα

11
dΩ

J
+

∫
ψ∗
α

12

T̂ µν
f ψα

12
dΩ
A
. (49)

The account of the Riemann curvature of the space / time coordinates (and, hence,

the momentum space) makes the geometric meaning of momentum operator kν which

appears in (45) unclear and, accordingly, devalues the formulated mathematical con-

struction.

So, what remains after all these futile attempts to construct a system of equations

of the relativistic quantum theory?26

26Albert Einstein wrote to Maurice Solovine that with his persistent desire to understand the basic

principles, ”the most part of his time was wasted on futile efforts” ([7], a letter from 30. .1924). The

failure, of course, is an inalienable part of the attempts to ”understand the basic principles”.
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There remains some contour, outline of the non-embodied intention. And accord-

ing to this contour, the quantum electrodynamics equations should consist of three

groups:

(1) The equation growing from the Dirac equation (42) for one of the two inde-

pendent Dirac vectors. Information on the second vector is included into this

equation in the form of coefficients containing Ω
J
or Ω

A
integrals of the quadratic

forms that contain the second Dirac vector.

(2) The equation for the second Dirac vector growing from the Maxwell equations.

Perhaps, this equation should also be quasi-linear and contain information on

the first Dirac vector in coefficients represented by Ω
J
or Ω

A
integrals. We have

constructed the equation (46) as linear, and this linearity violates the ”Dirac

equality” of vectors ψ
12

and ψ
22
, which causes some distrust to this equation.

(3) Einstein’s classical gravity equations, the right side of which represents Ω
J
or Ω

A

integrals of quadratic forms that contain Dirac vectors (49).

Operator relations, replacing the current equations of classical electrodynamics with

continual currents [1], must be added to these equations.

What might be considered the criterion of such program success?

• The existence of a variety of stationary solutions that correspond to massive leptons

[1].

• The correct result of mass calculation of the muon and the triton.

• Predicting of the masses of more massive leptons (if there are more than three states)

in the spectrum of stationary states.

5 Dirac Space and Dirac Vectors in Quantum

Singlet-triplet (Electroweak) Theory

In the quantum singlet-triplet theory, the two dyads of quantum electrodynamics –

”space/momentum” {x|k} and {singlet current | singlet potential} {J|W} – are com-

plemented with the third dyad – {triplet current | triplet potential} {J|W}. Corre-

spondingly, all of the observable physical quantities, for example, the Born fluxes, get

the third dyadic index a = 1 or a = 2. For the three dyads we obtain eight variants for

possible measurement procedures or, respectively, eight variants of the Dirac space with

the arguments of the first or second semi-components of each dyad:

⟨1|1|1⟩ ←→ ⟨2|2|2⟩,
⟨1|1|2⟩ ←→ ⟨2|2|1⟩,
⟨1|2|1⟩ ←→ ⟨2|1|2⟩,
⟨1|2|2⟩ ←→ ⟨2|1|1⟩.

(50)

The set of dyadic indices in the right column (50) is a dyadic negation of the set of indices

of the left column. Dirac vectors with a set of indices of the left column (50) are the

dyad-conjugated Dirac vectors with a set of indices on the right column. Dyad-conjugated
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Dirac vectors of the left and right columns should be connected with the singlet- triplet

relativistic Fourier-transform.

Of course, as in quantum electrodynamics, the Dirac vectors as constructible quanti-

ties, are preceded by the Born densities as observable quantities. For example, let us

assume that N
111

is the total number of all measurements within the framework of the

set of measurement procedures ⟨1|1|1⟩, made over some infinite three-dimensional hyper-

surface σ (with the time-like unit vector nµ at each point) and that ∆N
111

is the number of

measurements which reveal something in a small but finite 3-volume ∆σ of surface σ,

and simultaneously , in a small but finite 4-zone of singlet 4-current ∆Ω
S
, and simul-

taneously in a small but finite 12-dimensional volume ∆Ω
T
of the triplet current space.

The Born density ξ
111

is determined by the relation similar to (25):

lim
N
111

→∞

(
∆N

111

N
111

)
=

∫
∆σ

∫
∆Ω

S

∫
∆Ω

T

ξ
111

dσdΩ
S
dΩ
T
. (51)

The integral in (51) is a 19-fold.

As in quantum electrodynamics, we postulate the fact of existence of the Born flux ρν
111

with the formula similar to (26):

ξ
111

= ρν
111
nν . (52)

Similarly, within the framework of the eight possible variants for singlet-triplet states of

the measurement procedures, we will construct all eight Lorentz vectors of Born fluxes

ρν
abc

(a, b, c = 1or2). Each of the eight Born fluxes is the function of its intrinsic set

of arguments, i.e. defined in its intrinsic version of Dirac space27. Dirac space of the

singlet-triplet theory is twenty-dimensional: four dimensions are generated by the first

and the second (singlet) dyads each, and 4 × 3 dimensions are generated by the third

triplet-dyad.

Dirac algebraic equations (27), connecting the Dirac vectors with the Born densities, take

the third dyadic index, but preserve their form:

ψ∗
α

abc

Γν
αβ ψβ

abc

= ρ
abc

ν . (53)

Equations (53) are not enough to determine the set of Dirac vectors ψ
abc

and, as above,

in quantum electrodynamics, we prescribe the presence of Fourier-coupling between the

dyad-coupled Dirac vectors:

ψα
abc

RFT (ST )
= ψα

abc

. (54)

27Neutrino problems, requiring isotropization of singlet current Jν or one of the three Yang-Mills currents

Jν , are easily and elegantly solved in the classical field theory with continual currents [1], [2]. In the

quantum version of the theory, neutrino situation is connected with the appearance of singularity of one

or two Born fluxes on cone JνJν = 0 or, for example, on cone
3

J ν
3

Jν= 0 in current spaces. The correct

construction of the Dirac vectors in such singular situation is not an easy task. Therefore, the quantum

description of neutrino seems a more difficult problem than its classical description, presented in [1], [2].
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Symbolic notation (54), as well as its singlet analogue (31), implies the relativistic Fourier

transform, which should be structured for quantum version of the singlet-triplet theory.

By analogy with singlet formula (32), we can expand the formal notation (54) as follows:

ψα
abc

=
1

(2π)19/2

∫∫∫
eiϕψα

abc

dσ
a
dΩ

b
dΩ

c
,

ψα
abc

=
1

(2π)19/2

∫∫∫
e−iϕψα

abc
dσ
a
dΩ

b
dΩ

c
.

(55)

Relativistic singlet-triplet Fourier-phase will be constructed by analogy with the singlet

formulas (33) – (36):

ϕ = η + α

(
1

pS
JνWν +

1

pT
Jν ·Wν

)
, (56)

where pS and pT are Weinberg parameters [2].

Relation (56) means that the Fourier-phase ϕ is formed by a linear combination of scalar

products of two semi-components of each field dyad. The relative weights of these prod-

ucts are borrowed from the interaction Lagrangian of the classical singlet- triplet theory

[2].

The space-momentum part of the Fourier-phase η can be entered either in a usual form

(35) – if we tend to ignore the problems of the Riemannian curvature, or in a hypothetical

form (36) which allows to account these Riemann problems in some form.

As in quantum electrodynamics, the Fourier-phase formula (56) is open to criticism (does

not account the constraints on currents and the couplings between currents [2]; contains

an arbitrary construction (36) for phase η, etc.). However, now we can not suggest any

other formula for the Fourier-phase.

Integral equations (54) together with algebraic Dirac equations (53) allow to construct

eight complex Dirac vectors28 by eight of the observable real Born fluxes, but this eight of

the Dirac vectors forms four Fourier-doublets, and, therefore, for a complete description

of the singlet-triplet state it is sufficient to know only four Dirac vectors – one vector of

each of the Fourier-doublet.

Consequently, the quantum theory of the singlet-triplet states should contain four fun-

damental equations controlling these four independent Dirac vectors (plus geometrical

Einstein equations that control metric tensor).

One of these fundamental equations arises from the Dirac equation (entered with regard

for the triplet sector). The possible way to construct this equation has been shown above

in the discussion of fundamental equations of quantum electro-dynamics. Two more equa-

tions arise from Maxwell and Yang-Mills classical field equations.

One more equation, which does not have any source in prior physics, remains ”unsup-

ported”. Perhaps, we have to dare to use the Dirac equation twice, for both Fourier

vectors.

However, we have already gone too far into the undeveloped and unfriendly quantum

28Under satisfying the solvability conditions which are the singlet-triplet relativistic generalizations of

the Heisenberg inequalities. There must be more of these conditions than in quantum electrodynamics.
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territory. It is time to build a fort, fortify our positions and wait for the saving cavalry

to come.

6 Dirac Space and Dirac Vectors in Quantum Singlet-triplet-

octuplet Theory (The Standard Model)

In the quantum version of the singlet-triplet-octuplet theory (STO-theory, or the Stan-

dard Model) the three dyads of the singlet-triplet theory are complemented with the

fourth dyad ”octuplet current/octuplet potential” {J|W}. Accordingly, all of the ob-

servable physical quantities, for example, the Born fluxes, get the fourth dyadic index

a = 1 or a = 2. For the four dyads there appear 16 different possible measurement proce-

dures or, respectively, 16 variants of the Dirac space. These 16 variants can be arranged

into eight dyad-conjugated pairs:

⟨1|1|1|1⟩ ←→ ⟨2|2|2|2⟩,
⟨1|1|1|2⟩ ←→ ⟨2|2|2|1⟩,
⟨1|1|2|1⟩ ←→ ⟨2|2|1|2⟩,
⟨1|1|2|2⟩ ←→ ⟨2|2|1|1⟩,
⟨1|2|1|1⟩ ←→ ⟨2|1|2|2⟩,
⟨1|2|2|1⟩ ←→ ⟨2|1|2|1⟩,
⟨1|2|2|1⟩ ←→ ⟨2|1|1|2⟩,
⟨1|2|2|2⟩ ←→ ⟨2|1|1|1⟩.

(57)

The set of dyadic indices in the right column is the dyadic negation of the set of indices

of the left column. The Dirac vectors with a set of indices of the left and right columns

are dyad-conjugated and, therefore, must be connected by relativistic (STO)-Fourier-

transform.

As well as in quantum electrodynamics or the quantum singlet-triplet theory, the Dirac

vectors (as constructible quantities) are preceded by the Born-densities (as observable

quantities). Without deciphering the notations which are already obvious to the reader,

we can rewrite formula (51) of the ST-theory for the STO-theory.

lim
N

1111
→∞

(
∆ N

1111

N
1111

)
=

∫
∆σ

∫
∆Ω

S

∫
∆Ω

T

∫
∆Ω

O

ξ
1111

dσdΩ
S
dΩ
T
dΩ
O
. (58)

The integral in (58) is 51-fold: the integration by the 32-dimensional space of octuplet

vectors has been added to integral dimension (51).

Using the same formula (52), which was used for the ST-theory, we are constructing Born

flux ρν
1111

from Born density ξ
1111

:

ξ
1111

= ρν
1111

nν . (59)

By changing the dyadic indices by the formulas similar to (58) and (59), we construct

all 16 Lorentz vectors of Born fluxes ρν
abcd

(a, b, c, d = 1 or 2) within the framework
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of the sixteen variants of measurement procedures possible in the STO- states. Each

of the Born fluxes is a function of its intrinsic set of arguments, i.e. each vector is

determined in its intrinsic version of the Dirac space. The Dirac space for STO-state is

52-dimensional: four dimensions are generated by the first and second dyad each (space-

momentum and singlet), 12 dimensions are generated by the third dyad (triplet) and 32

dimensions correspond to the fourth dyad (octuplet).

Dirac algebraic equations (27) or (53), take the fourth dyadic index, but do not change

their form:

ψ∗
α

abcd

Γν
αβ ψβ

abcd

= ρ
abcd

ν . (60)

In addition to these equations, which are not sufficient to determine the sixteen complex

four-component Dirac vectors ψ by the sixteen real four-component Lorentz vectors ρ,

we prescribe the existence of the Fourier-coupling between the dyad-conjugated Dirac

vectors:

ψα
abcd

RFT (STO)
= ψα

abcd

. (61)

Symbolic notation (61), as well as its electrodynamic analogue (31) and its ST-analogue

(54), implies the relativistic Fourier-transform, which must be reasonably constructed for

quantum version of the STO- theory.

By analogy with electrodynamic formula (32), and ST-formula (55), we can open the

formal notation (61) as follows:

ψα
abcd

=
1

(2π)51/2

∫∫∫∫
eiϕψα

abcd

dσ
a
dΩ

b
dΩ

c
dΩ

d
,

ψα
abcd

=
1

(2π)51/2

∫∫∫∫
e−iϕψα

abcd
dσ
a
dΩ

b
dΩ

c
dΩ

d
.

(62)

Relativistic Fourier phase for STO-theory will be constructed by analogy with (56):

ϕ = η + α

(
1

pS
JνWν +

1

pT
Jν ·Wν +

1

pO
Jν ·Wν

)
, (63)

( pS, pT , pO are Weinberg parameters [3]).

Formula (63), as well as its analogues (56) and (34), is probably incomplete: it does not

account the couplings between currents and restrictions to current modules29.

Integral equations (62) together with the Dirac algebraic equations (60) allow to construct

sixteen complex Dirac vectors by the sixteen observable real Born fluxes. However, these

sixteen Dirac vectors form eight Fourier-doublets and, consequently, for complete descrip-

tion of the STO-state it is sufficient to know only eight Dirac vectors – one vector for each

Fourier-doublet. Therefore, the quantum version of the theory of STO-states should con-

tain eight independent fundamental equations that control this eight independent Dirac

29Within the framework of the constructed here apparatus of quantum physics of currents and potentials

there is just nowhere else to introduce these restrictions and couplings – if they are, in general, important:

besides relativistic Fourier-phase there is no other ”free space” for their accounting in the theory. The

only alternative is the direct restriction on the geometry of Dirac spaces.
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vectors (plus geometric Einstein equation controlling the metric tensor).

One of these equations grows from the Dirac equation which must be written now with

the account of the octuplet sector. Three more equations are based on the three clas-

sical field equations (Maxwell equations in the singlet sector and Yang- Mills equations

in the triplet and octuplet sector). Half of the required fundamental equations of the

STO-theory ”hang” without any classical basis. We have three more current equations of

the classical field theory with continuum currents in reserve – for the singlet ,triplet and

octuplet sectors ( see [1], [2], [3]). However, in quantum theory, these equations are most

likely to become operator relations similar to (38), rather than the missing fundamental

equations for the Dirac vectors. Apparently, the Dirac equation should appear in the

theory more than once while controlling the behavior of several Dirac vectors.

But if we take into account that beyond the STO-theory there is nothing at all (this is

the whole known physics), the theory must also contain as one of the solutions and the

Big Bang model (the birth of the Universe from nothing) – and, inevitably, in thinking

about this theory there may appear a Pascal feeling of ”looking into the abyss”.

7 Conclusion

This article presents a perplexing unfinished project of construction the quantum version

of physics of currents and potentials30. If historical analogy with the era of construction

non-relativistic quantum mechanics is permissible, the project has been presented to

the reader in the early ”de Broglie” stage, in the stage of an inspiring but vague idea,

long before the ”Schrödinger” stage where appears a clear and complete mathematical

construction. However, we do have some advantages over de Broglie’s era: we already

know Born’s statistical interpretation of the Dirac wave functions, we have Bohr’s idea of

complementarity and we even know the dimension of the mathematical spaces in which

not yet written wave equations of the theory should work.

But we have no idea how massive particles in the form of the intrinsic states of the Dirac

vectors can appear within the framework of this concept...

The most radical statement which can be formulated on the basis of this article is as

follows:

In contrast to non-relativistic quantum theory, quantum relativistic states

can not be described by one wave function (one Dirac vector); the number

of wave functions is determined by sector multiplicity of the condition – two

Dirac vectors for the singlet state (and for any one-sector state); four Dirac

vectors for the ST-states (and for any two-sector states); eight Dirac vectors

for three-sector STO-states. The number of fundamental wave equations of

the theory is equal to the number of independent Dirac vectors. Some of the

fundamental equations of the theory, similarly to the Dirac equation, have

no ”precursors” in classical physics.

30However, as Leonardo da Vinci once said: ”La prima pittura fu sol di una linea”. (”The first painting

consisted just of a single line”).
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Development of the ”Schrödinger” stage, where the fundamental wave equation should

appear, turned out for the author to be the ”work exceeding our powers and our hopes”31.

We do not know whether this project, this concept of 52-dimensional Dirac capacitance

for eight Dirac vectors, is the stone, the unshakable foundation upon which there may be

erected a solid construction of theoretical physics, which is not shaken by regularizations,

renormalizations, anomalies and Higgs fields. It is appropriate to repeat the words of

Saint Augustine: ”We will be searching as if we can find, and we will find if our search is

endless”.
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