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Abstract: Bianchi type V matter filled universe with varying Λ in general relativity are

investigated by using the law of variation for the generalized mean Hubble’s parameters. This

yields the constant value of deceleration parameter and generates two types of solutions for the

average scale factor one is of power law type and other is of exponential type. The cosmological

constant is found to be a decreasing function of time, which is supported by results from recent

type Ia supernovae observations. Also it has been found that cosmological constant Λ (t) affects

entropy. Some physical and geometric behaviour of the models are discussed.
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1. Introduction

The study of Bianchi type V cosmological models create more interest as these mod-

els contain isotropic special cases and permit arbitrary small anisotropy levels at some

instant of cosmic time. As an anisotropic cosmological model, cosmologists generally con-

sider Bianchi type I space-times, which are the simplest generalizations of FRW models.

There are still a few other models that describe an anisotropic space-time and generate

particular interest among physicists such as Lorenz and Petzold [1], Singh and Agrawal

[2], Ibanez et al [3], Berger [4], Marsha [5], Socorro and Medina [6]. Among different

models Bianchi type V universes are the natural generalization of the open FRW model,

which are eventually become isotropic. A number of authors such as Franswerth [7],

Collins [8], Maartens and Nel [9] Wainwright et al [10], Beesham [11], Maharaj and Bee-

sham [12], Shri Ram [13] and Camci et al [14] have studied bianchi type V models in
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differents Physical contexts. Christodoulakis et al [15,16] have studied untilled diffuse

matter Bianchi V universes with perfect fluid and scalar field coupled to perfect fluid

sources obeying a general equation of state. Following the work of Saha [17], Singh and

Chaubey [18,19] have presented a quadrature form of metric functions for Bianchi type

V model with perfect fluid and viscous fluid.

In resent years the solution of Einstein’s field equation for homogeneous and anisotropic

Bianchi type models have been studied by several authors such as Hajj-Boutros [20,21],

Mazumdar [22] in different text. Solutions of field equations may also be generated by

applying the law of variation for Hubble’s parameter, which was initially proposed by

Berman [23] for FRW models. The main feature of this law is that it yields constant

value of deceleration parameter. The cosmological models with constant deceleration

parameter have been studied by Maharaj and Naidoo [24], Johri and Desikan [25], Singh

and Desikan [26] in different theories of FRW and Bianchi type I models. Recently Singh

and Kumar [27] extended Berman works to study anisotropy Bianchi type II space-time

models by formulating the law of variation for Hubble’s parameters.

Models with a relic cosmological constant Λ have received considerable attention

recently among researchers for various reasons [28-32] Some of the resent discussions on

the cosmological constant problem and on cosmology with time varying cosmological

constant by Ratra and Peebles [33] and Dolgov [34-36] pointed out that in the absence of

any interaction with matter or radiation, the cosmological constant remains a “constant”.

however in the presence of interactions with matter or radiation, a solution of Einstein’s

equations and the assumed equation of covariant conservation of stress-energy with a time

varying Λ can be found. For these solutions, conservation of energy requires a decrease

in the energy density of the vacuum component to be compensated by a corresponding

increase in the energy density of matter or radiation. Earlier researchers on this topic,

are contained in Zeldovich [37]. Resent cosmological observations by High-z Supernova

Team and Supernova Cosmological project (Garnavich et al [38], Perlmutter et al [39],

Rices et al [40], Schmidt et al [41] strongly favour a significant and positive Λ with the

magnitude Λ
(
G–h/c3

)
≈ 10−123. Their findings arise from a study of more than 50 type

Ia Supernovae with redshifts in the range 0 ·10 ≤ z ≤ 0 ·83 and suggest Friedman models

with negative pressure matter such as the cosmological constant, domain walls or cosmic

strings. The main conclusion of these observations on magnitude and redshift of type Ia

supernovae suggests that the expansions of the universe may be an accelerating one with

a large function of cosmological density in the form of the cosmological Λ-term.

In this paper I extended the work of Singh, Shri Ram and Zeyauddin [42] in the

presence of interactions with matter or radiation to specially homogeneous and totally

anisotropic Bianchi type V models with perfect fluid as source. In section 2, we present

the field equations and in sec.3 we present the law of variation of Hubble’s parameter for

this space-time that yields the constant value of deceleration parameter.

In sec.4, we presented the exact solution of field equations and in sec. 5, we present

discussion and concluding remaks.
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2. Field Equations

For Bulk Viscous fluid the usual energy momentum tensor is modify by addition of term

T
(vac)
ij = −Λ(t)gij, (1)

Where Λ(t) is the cosmological term and gij is the metric tensor. Thus the new energy

momentum tensor is given by

Tij = (p+ ρ)uiuj − pgij − Λ(t)gij, (2)

Where p and ρ are the energy density and pressure of the cosmic fluid, and ui is the fluid

four velocity such that uiui = 1.

We consider the space-time metric of spatially homogeneous Bianchi type v of the

form

ds2 = dt2 − A2(t)dx2 − e2αx
[
B2(t)dy2 + C2(t)dz2

]
(3)

where α is constant. For the energy momentum tensor (2) and Bianchi type V space time

(3), Einstien’s field equations

Rij −
1

2
Rgij = −8πTij (4)

Yield the following five independent equations

A44

A
+

B44

B
+

A4B4

AB
− α2

A2
= −8π(p+ Λ), (5)

A44

A
+

C44

C
+

A4C4

A4C4

− α2

A2
= −8π(p+ Λ), (6)

B44

B
+

C44

C
+

B4C4

BC
− α2

A2
= −8π(p+ Λ), (7)

A4B4

AB
+

A4C4

AC
+

B4C4

BC
− 3α2

A2
= −8π(ρ− Λ), (8)

2
A4

A
− B4

B
− C4

C
= 0, (9)

Here and what follows the suffix 4 by the symbol A, B, C denotes differentiation with

respect to t. Taking into account the conservation equation , we have

ρ4 + (ρ+ p)

(
A4

A
+

B4

B
+

C4

C

)
= 0 (10)

3. Model and Law of Variation for Hubble’s Parameter

The law of variation for the generalized mean Hubble parameter in the case of a spatially

homogeneous and anisotropic for Bianchi type V space time metric that yields a con-

stant value of deceleration parameter. We define the following physical and geometrical
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parameters to be used in formulating the law and further in solving the Einstein’s field

equations for the metric (1).

The average scale factor a of the Bianchi type V model is given by

a = (ABC)1/3 (11)

The spatial volume V is given by

V = a3 = ABC (12)

We defined the generalized mean Hubble’s parameter H as

H =
1

3
(H1 +H2 +H3) (13)

Where H1 = A4

A
H2 = B4

B
and H3 = C4

C
are the directional Hubble’s parameters in the

direction of x,y and z respectively. The suffix 4 denotes differentiation with respect to

cosmic time t.

From equation (11)-(13), we obtain the following relation

H =
1

3

V4

V
=

a4
a

=
1

3

(
A4

A
+

B4

B
+

C4

C

)
(14)

The physical quantity of observational interest in Cosmology are the expansion scalar θ,

shear scalar σ2 and the average anisotropy parameter Am. All are defined as follows

θ = ui
;i =

(
A4

A
+

B4

B
+

C4

C

)
(15)

σ2 =
1

2
σijσ

ij =
1

3

[
θ2 − A4B4

AB
− A4C4

Ac
− B4C4

BC

]
, (16)

Am =
1

3

3∑
i=1

(
∆Hi

H

)2

(17)

Where ∆Hi = Hi −H (i=1,2,3)

Since the line element (1) is completely characterized by Hubble parameter H, there-

fore let us consider that mean Hubble parameter H is related to the average scale factor

a by the relation

H = ka−n = k(ABC)−n/3 (18)

Where k (> 0) and n (≥ 0) are constant. Such type of relation has already been considered

by Berman [23] for solving FRW models. Later on, many authors have studied flat FRW

and Bianchi type models by using the special law of Hubble parameter that yields constant

value of deceleration parameter. The deceleration parameter (q) is defined as

q =
−a44a

a24
(19)
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From equation (14) and (18), we get

a4 = ka−n+1 (20)

a44 = −k2(n− 1)a−2n+1 (21)

From equation (19), (20) and (21), we get

q = n− 1 (22)

Thus we see that q is constant. The sign of q indicates whether the model inflates or

not. The positive sign of q (n >1) corresponds to standard decelerating model whereas

the negative sign −1 ≤ q ≤ 0 i.e. (0 ≤ n ≤ 1) indicates inflation. It may be noted that

though the current observations of SNe Ia and CMBR favor accelerating models (q < 0),

but they do not altogether rule out the decelerating ones which are also consistent with

these observations

From equation (20), we obtain the law of average scale factor a as

a = (nkt+ c1)
1/2 for n ̸= 0 (23)

And

a = c2 exp(kt), for n = 0 (24)

Where c1 and c2 are the constants of integration.

From eq. (23) it is clear that the condition for expansion of universe is n = q + 1 >

0.

4. Solution of Field Equations

Field equations (5) – (8) and (10) can be written in terms of H, σ2and q as

8π(p+ Λ) = H2(2q − 1)− σ2 +
α2

A2
, (25)

8π(ρ− Λ) = 3H2 − σ2 − 3α2

A2
, (26)

ρ4 + 3(ρ+ p)H = 0, (27)

Integrating equation (9) and absorbing the integration constant into B or C, without loss

of generality, we obtain

A2 = BC (28)

We now present the quadrature form of Einstein’s field equations (5)–(9). Subtracting

(7) from (6), one finds the following relation between A and B

A

B
= d1 exp

(
k1

∫
dt

a3

)
(29)
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Analogically, we find the other relations

B

C
= d2 exp

(
k2

∫
dt

a3

)
, (30)

C

A
= d3 exp

(
k3

∫
dt

a3

)
, (31)

Where d1, d2, d3, and k1, k2, k3, are constants of integration, obeying

d1d3 = d−1
2 , k1 + k2 + k3 = 0 (32)

In view of equation (32), we obtain the metric functions from (29)–(31) explicitly as

follows Saha [17], Singh and Chaubey [19]

A(t) = (l1)
1/3 a exp

(
K1

3

∫
dt

a3

)
, (33)

B(t) = (l2)
1/3 a exp

(
K2

3

∫
dt

a3

)
, (34)

C(t) = (l3)
1/3 a exp

(
K3

3

∫
dt

a3

)
, (35)

Where K1= k1–k3, K2 = -2k1 – k3, K3 = k1 + 2k3,

l1 =
3

√
d1/d3, l2 =

3

√
1
/
d21d3

, l3 =
3

√
d1d23

From equation (33) – (35), it is clear that for a = (nkt+ c1)
1/n with n > 0, the exponent

tends to unity for large value of t and the anisotropic model becomes isotropic.

From equation (28) and (33)-(35), we obtain

K1 = 0, K2= -K3 = K, l1 = 1, l2 = l−1
3 = M3

Where K and M are constants. Now the equation (33)-(35) can be written as

A(t) = a, (36)

B(t) = Ma exp

(
K

3

∫
dt

a3

)
, (37)

C(t) = M−1a exp

(
−K

3

∫
dt

a3

)
, (38)

Thus the metric functions are represented explicitly in terms of average scale factor a.

It is to be noted that once we get the value of a, we can find the metric functions.

Many authors have tried to find the solutions the quadrature equation (36)-(38) by using

different techniques. Here we solve equation (36)-(38) by using the average scale factor as

obtained in equation (23) and (24) for n ̸= 0 and n = 0, respectively by the assumption of

equation (18), which have physical interest to describe the decelerating and accelerating

universe.
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4.1 When n ̸= 0

Using equation (23) into (36)-(38), the solutions for metric functions can be written as

A(t) = (nkt+ c1)
1
n , (39)

B(t) = M(nkt+ c1)
1
n × exp

[
K

3k(n− 3)
(nlt+ c1)

(n− 3)/n

]
, (40)

C(t) = M−1(nkt+ c1)
1
n × exp

[
− K

3k(n− 3)
(nlt+ c1)

(n− 3)/n

]
, (41)

Where n ̸= 3.

Hence metric (3) reduces to the new form

ds2 = dt2−(nkt+c1)
2
ndx2−e2αx

M2(nkt+ c1)
2
n exp

(
K

3k(n−3)

(
nkt+ c1)

(n− 3)/n

))
dy2+

M−2(nkt+ c1)
2
n exp

(
− K

3k(n−3)
(nkt+ c1)

(n−3)
n

)
dz2

 ,

(42)

The pressure and density for model (42) is given by

8π(p+ Λ) = (2n− 3)k2(nkt+ c1)
−2 − K2

9
(nkt+ c1)

− 6
n + α2(nkt+ c1)

− 2
n (43)

8π(ρ− Λ) = 3k2(nkt+ c1)
−2 − K2

9
(nkt+ c1)

− 6
n − 6α2(nkt+ c1)

− 2
n (44)

For complete determinacy of the system, we consider a perfect gas equation of state

p = γρ, 0 ≤ γ ≤ 1. (45)

Equation (43), with the use of (45) and (44), reduces to

8π(1 + γ)ρ = 2nk2(nkt+ c1)
−2 − 2K2

9
(nkt+ c1)

− 6
n − 2α2(nkt+ c1)

− 2
n (46)

Eliminating ρ(t) between equation (44) and (46), we obtain

8π(1+γ)Λ = (2n−1−γ)k2(nkt+c1)
−2−(1−γ)

K2

9
(nkt+c1)

− 6
n+(3+3γ−2)α2(nkt+c1)

− 2
n

(47)

From equation (47), we observe that at the time of early universe the cosmological

constant (Λ) is negative (t < 0.678) and it increases rapidly during a very short period of

time (see Fig.1) For t = 0.678, the value of cosmological constant becomes positive and

get its maximum value at t =0.9275 then it decreases as time increases (see Fig. 2). We

also observe that the value of Λ is small and positive at late time which is supported by

recent type Ia supernovae observation [39-41] The various values of Λ at different cosmic

time t are given
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Fig. 1 The plot of cosmological constant Λ versus time t for the model (42) with parameters γ
= 0.5, α = 0.2, n = 1, k = 1, K = 2 and c1 = 0.1.

Fig. 2 The plot of cosmological constant Λ versus time t for the model (42) with parameters γ
= 0.5, α = 0.2, n = 1, k = 1, K = 2 and c1 = 0.1.

S.No. Cosmic

time

(t)

Cosmological

constant (Λ)

S.No Cosmic

time

(t)

Cosmological

constant (Λ)

1 0 -5798 9 1.183 0.008332

2 0.00249 -5003 10 1.487 0.005929

3 0.00514 -4292 11 2.105 0.003208

4 0.504 -0.07598 12 3.951 0.0009643

5 0.678 0.0000615 13 10.00 0.0001554

6 0.700 0.00264 14 20.00 0.00003923

7 0.817 0.00918 15 50.00 0.000006388

8 0.927 0.01008 16 100.00 0.000001582

The scalar curvature has the following expression

R = 6k2(2− n)(nkt+ c1)
−2 +

2K2

9
(nkt+ c1)

− 6
n − 6α2(nkt+ c1)

− 2
n (48)
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The directional Hubble’s parameters H1, H2 and H3 are given by

H1 = k(nkt+ c1)
−1 (49)

H2 = k(nkt+ c1)
−1 +

K

3
(nkt+ c1)

− 3
n (50)

H2 = k(nkt+ c1)
−1 +

K

3
(nkt+ c1)

− 3
n (51)

Where as the average generalized Hubble’s parameter is given by

H = k(nkt+ c1)
−1 (52)

The other physical quantities θ, Am and σ2 is given by

θ = 3k(nkt+ c1)
−1, (53)

Am =
2

27

K2

k2
(nkt+ c1)

2n−6
n , (54)

σ2 =
K2

9
(nkt+ c1)

− 6
n , (55)

4.2 When n=0

In this case, the solutions for A(t), B(t) and C(t) from equation (36)-(38) with help of

equation (24) can be given as

A(t) = c2 exp(kt), (56)

B(t) = Mc2 exp

[
kt− K

3c32k
exp(−kt)

]
, (57)

B(t) = M−1c2 exp

[
kt+

K

3c32k
exp(−kt)

]
, (58)

Hence the metric (3) reduces to new form

ds2 = dt2 − c22 exp(2kt)dx
2 − exp(2αx)

M2c22 exp(2kt− 2K
3c32k

exp(−kt)dy2+

M−2c22 exp(2kt+
2K
3c32k

exp(−kt)dz2

 , (59)

For this derived model (59), the pressure, energy density and cosmological constant are

given by

8π(p+ Λ) = −3k2 − K2

9c62
exp(−2kt) +

m2

c22
exp(−2kt) (60)

8π(ρ− Λ) = 3k2 − K2

9c62
exp(−2kt)− 3m2

c22
exp(−2kt) (61)

From equation (45), (60) and (61), we get

8π(1 + γ)ρ = −2K2

9c62
exp(−2kt)− 2α2

c22
exp(−2kt) (62)
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Eliminating ρ(t) between (61) and (62), we get

8π(1 + γ)Λ =
α2(3γ + 1)

c22
exp(−2kt) +

K2(γ − 1)

9c62
exp(−2kt)− 3(1 + γ)k2 (63)

From equation (63), we observe that the value of Cosmological constant decreases as the

time increases. Thus it is decreasing function of time and approaches small value .Which

is supported by the results from resent type Ia supernovae observations

Figure 3 clearly shows the behavior of Cosmological constant Λ as the decreasing

function of time.

Fig. 3 The plot of cosmological constant Λ versus time t for the model (59) with parameters γ
= 0.5, α = 2, k = 1, K = 2 and c2 = 1

From equation (63), we observe that at the time of early universe the cosmological

constant (Λ) is positive (t < 0.39) and it decreases as time increases For t = 0.39, the value

of cosmological constant becomes negative Thus we observe that the value of Λ is small

and positive at early time which is supported by recent type Ia supernovae observation

[39-41] As time increases the value of cosmological constant becomes negative which leads

the idea of re collapse of our universe. The various values of Λ at different cosmic time t

are given

The scalar curvature has the following expression

R = 12k2 +

(
2K2

9c62
− 6α2

c22

)
exp(−2kt) (64)

The directional Hubble’s parameters H1, H2 and H3are given by

H1 = k (65)

H2 = k +
K

3c32
exp(−kt) (66)

H2 = k − K

3c32
exp(−kt) (67)

Where as the generalized Hubble’s parameter is given by

H = k (68)
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S. No. Cosmic

time (t)

Cosmological

Constant

(Λ)

S. No. Cosmic

time (t)

Cosmological

Constant

(Λ)

1. 0 0.1401 8. 0.35 0.0094

2. 0.05 0.1154 9. 0.385 0.00075

3. 0.10 0.09306 10. 0.39 -0.00044

4. 0.15 0.07284 11. 0.40 -0.002799

5. 0.20 0.05455 12. 0.45 -0.0139

6. 0.25 0.03799 13. 2.50 -0.1177

7. 0.30 0.02302 14. 5.00 -0.1194

The other physical quantities θ, Am and σ2 is given by

θ = 3k (69)

Am =
2

3

K2

k2c62
exp(−2kt) , (70)

σ2 =
K2

c62
exp(−2kt) (71)

It is found that the directional Hubble parameters are time dependent while the average

Hubble parameter is constant. In this case also we found deceleration parameter q = -1.

This is the case of de sitter universe.

5. Discussion and Concluding Remarks

In this paper we have presented the law of variation for Hubble’s parameter in homoge-

neous and Bianchi type V space-time model that yield a constant value of deceleration

parameter. We have obtained exact solutions of EFES for Bianchi type V space-time

with a perfect fluid as the source of matter and cosmological term Λ varying with time.

It is also seen that solutions obtained by Singh, Shri Ram and Zeyauddin [42] are par-

ticular of our solutions. The cosmological constant for model (42) is decreasing function

of time and it approach a small positive value at late time. Which are supported by the

results from recent supernovae observations obtained by the High-z Supernova Team and

Supernova Cosmological project (Garnavich et al [38], Perlmutter et al [39], Rices et al

[40], Schmidt et al [41]. The cosmological constant for model (59) is decreasing function

of time and it approach a small positive value at early time of universe After that its

value is negative (fig 3). In concequence today the estimation of Λ is not only complicated

but also uncertain and indirect. It appears however the Einstein- Maxwell theory points

to a different approach possibly simpler and more direct, since it consist in measuring a

constant electromagnetic background of universe. Such a possibility is illustrated below
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for Λ ≤ 0 [43, 44] i.e. for the case when the presence of Λ decelerates the expansion

of universe. A negative cosmological constant adds to the attractive gravity, therefore

universe with negative cosmological constant are invariably doomed to re collapse. For

model (59) we observe that initially the value of cosmological constant is positive and its

value becomes negative as time increases which signifies the re collapse of universe and

generates the next one.

It is possible to discuss entropy of our universe. In thermodynamics the expression

for entropy is given by

TdS = d(ρV ) + PdV (72)

Where V is the spatial volume.

To solve the entropy problem of the standard model, it is necessary to treat dS > 0,

for at least the part of evolution of universe. Hence from equation (72)

TdS = ρ4 + (ρ+ P )

(
A4

A
+

B4

B
+

C4

C

)
> 0 (73)

The conservation equation T j
ij = 0; for metric (3) lead to

ρ4 + (ρ+ P )

(
A4

A
+

B4

B
+

C4

C

)
+

3

2
ΛΛ4 +

3

2
Λ2

(
A4

A
+

B4

B
+

C4

C

)
= 0 (74)

Equation (73) and (74) leads to

Λ4 + Λ

(
A4

A
+

B4

B
+

C4

C

)
< 0 (75)

From equation (14) and (75), we have

Λ4 + 3ΛH < 0 (76)

For n ̸= 0 and n = 0 equation (76) leads to

Λ <
n0

(nkt+ c1)
3
n

, n ̸= 0 (77)

Λ < exp(k0 − 3kt), n = 0 (78)

Where n and k are constants of integration. It is clear that Λ is the decreasing function

of time in both case. Thus the cosmological constant affect entropy because for entropy

dS > 0 leads to the observational result of Λ(t). From equation (76) we conclude that

cosmological constant is responsible for expansion of universe. For model (42) we find

singularity at t = − c1
3k
. The expansion scalar (θ), the mean anisotropy parameter (Am)

and shear scalar (σ) all diverse at t = − c1
3k

for n < 3. Also limt→∞
σ2

θ2
= 0, hence model

approaches isotropic at late time whereas the model (59) represent singularity free model.

For this model also we observe that limt→∞
σ2

θ2
= 0, hence model approaches isotropic at

late time. The rate of expansion of universe is uniform through out the evolution. As

t → ∞, p = ρ, which may be considered as vacuum energy density. This class of
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solution is consistent with the recent observations of supernovae Ia [39-41] and chaplygin

gas models by Kamenshchik et al [45] that require the present universe is accelerating.

Generally the models presented in this paper are expanding, shearing and accelerating

which become isotropic at later time of evolution. The solution obtained in this paper

could give an appropriate description of the evolution of universe. More realistic models

may be analyzed using this technique, which may lead to interesting and different physical

behaviors of the evolution of universe.
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